期刊文献+

结合生成对抗网络与混合注意力机制的街景图像语义分割

Semantic Segmentation of Street View Images Based on Generative Adversarial Networks and Mixed Attention Mechanisms
下载PDF
导出
摘要 街景图像语义分割是自动驾驶领域的主要研究任务之一,对于路径规划和行人安全保障具有重要意义。目前,街景图像语义分割主要存在小目标物体分割不精确、模型容易出现过拟合的问题。为此,提出一种结合生成对抗网络与混合注意力机制的街景图像语义分割模型。具体而言,提出一种多尺度混合注意力模块,用于增强上下文语义信息、提高特征表征能力和对多尺度目标的适应性。同时,为了降低过拟合,引入BN层,结合DCGAN网络构建生成对抗网络分割模型,通过判别损失和分割损失共同约束训练,以增强模型稳定性、提高分割精度。实验结果表明,与DeepLabV3+相比,所提模型在Cityscapes数据集上的分割精度提高了2.4个百分点,mIoU值达到73.4%。 Semantic segmentation of street view images is one of the main research tasks in the field of autonomous driving.At present,seman⁃tic segmentation of street view images mainly suffers from inaccurate segmentation of small target objects and overfitting of models.Therefore,a street view image semantic segmentation model combining generative adversarial networks and hybrid attention mechanisms is proposed.Spe⁃cifically,a multi-scale hybrid attention module is proposed to enhance contextual semantic information,improve feature representation abili⁃ty,and adaptability to multi-scale targets.At the same time,in order to reduce overfitting,a BN layer is introduced and combined with a DC⁃GAN network to construct a generative adversarial network segmentation model.The training is constrained by both discriminative loss and seg⁃mentation loss to enhance model stability and improve segmentation accuracy.The experimental results showed that compared with Deep⁃LabV3+,the proposed model improved segmentation accuracy by 2.4 percentage points on the Cityscapes dataset,with a mIoU value of 73.4%.
作者 吴炳剑 高琳 李衍志 武志学 李思源 李倩 WU Bingjian;GAO Lin;LI Yanzhi;WU Zhixue;LI Siyuan;LI Qian(College of Blockchain Industry,Chengdu University of Information Technology,Chengdu 610225,China)
出处 《软件导刊》 2024年第11期187-192,共6页 Software Guide
基金 四川省科技计划项目(2020YFS0316)。
关键词 街景语义分割 生成对抗网络 混合注意力机制 混合损失函数 street view semantic segmentation generative adversarial network hybrid attention mechanism hybrid loss function
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部