摘要
共型预测通过将预测点扩展成预测集的方式来严谨量化预测的不确定性,它以灵活的结构和严格的有限样本理论保证而著称,可以简单而方便地嵌入几乎任何预测模型中,并随着机器学习的飞速发展而在近年来获得了越来越多的关注.本文综述共型预测相关的发展历程,在回顾共型预测的基础算法和理论同时,也对共型预测无处不在的应用场景进行了介绍.
Conformal prediction has gained increasing attention in recent years with the rapid development of machine learning.Known for its flexible structure and strict finite-sample theoretical guarantees,conformal prediction can be quickly and conveniently embedded into almost any prediction model.It performs rigorous uncertainty quantification by expanding prediction points into prediction sets.In this paper,we summarize the development history related to conformal prediction and review the basic algorithms and generalizations of conformal prediction along with the ubiquitous application scenarios of conformal prediction.
作者
金璋
王学钦
Zhang Jin;Xueqin Wang
出处
《中国科学:数学》
CSCD
北大核心
2024年第12期2121-2140,共20页
Scientia Sinica:Mathematica
基金
国家重点研发计划(批准号:2022YFA1003803)
国家自然科学基金(批准号:12231017和72171216)资助项目。
关键词
共型预测
机器学习
预测集
不确定性量化
conformal prediction
machine learning
prediction set
uncertainty quantification