期刊文献+

Exact Convergence Rate of the Local Limit Theorem for a Branching Random Walk in Z^(d)with a Random Environment in Time

原文传递
导出
摘要 Consider a branching random walk with a random environment in time in the d-dimensional integer lattice.The branching mechanism is governed by a supercritical branching process,and the particles perform a lazy random walk with an independent,non-identical increment distribution.For A■Z^(d),let Z_(n)(A)be the number of offsprings of generation n located in A.The exact convergence rate of the local limit theorem for the counting measure Z_(n)(·)is obtained.This partially extends the previous results for a simple branching random walk derived by Gao(2017,Stoch.Process Appl.).
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2024年第5期805-822,共18页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.11971063)。
  • 相关文献

参考文献2

二级参考文献37

  • 1Asmussen S, Kaplan N. Branching random walks I. Stochastic Processes Appl, 1976, 4(1): 1-13.
  • 2Athreya K B, Karlin S. On branching processes with random environments I. Extinction probabilities. Ann Math Statist, 1971, 42:1499-1520.
  • 3Athreya K B, Karlin S. On branching processes with random environments Ⅱ. Limit theorems. Ann Math Statist, 1971, 42:1843-1858.
  • 4Baillon J B, Clement Ph, Greven A, et al. A variational approach to branching random walk in random environment. Ann Probab, 1993, 21(1): 290-317.
  • 5Biggins J D. Martingale convergence in the branching random walk. J Appl Probability, 1977,14(1): 25 37.
  • 6Biggins J D. The central limit theorem for the supercritical branching random walk and related results. Stochastic Process Appl, 1990, 34(2): 255-274.
  • 7Biggins J D, Kyprianou A E. Measure change in multitype branching. Adv in Appl Probab, 2004, 36(2): 544-581.
  • 8Durrett R. Probability: theory and examples. 2nd ed. Belmont, CA: Duxbury Press, 1996.
  • 9Greven A, den Hollander F. Branching random walk in random environment: phase transitions for local and global growth rates. Probab. Theory Related Fields, 1992, 91(2): 195-249.
  • 10Harris T E. The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Berlin: Springer-Verlag, 1963.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部