期刊文献+

基于机器学习的煤矿安全自动化预警系统设计

Design of Coal Mine Safety Automation Early Warning System Based on Machine Learning
下载PDF
导出
摘要 设计了一套基于机器学习的煤矿安全自动化预警系统,通过实时分析传感器采集的数据,训练深度学习模型,以预测安全风险。某煤矿的实验结果表明,该系统在正常生产、检修期及模拟紧急情况3种工况下均表现出良好的预警性能,准确率和召回率均在80%以上,能有效预警安全隐患。该系统为煤矿智能化安全管控提供了可行方案。 A machine learning based coal mine safety automation early warning system is designed to train a deep learning model by analyzing the data collected from sensors in real time in order to predict safety risks.The experimental results in a coal mine show that the system exhibits good early warning performance under three working conditions,namely,normal production,maintenance period and simulated emergency,with accuracy and recall above 80%,and is able to effectively warn of potential safety risks.The system provides a feasible solution for intelligent safety control in coal mines.
作者 郭森波 GUO Senbo(Shanxi Jinmei Qinxiu Longwan Energy Co.,Ltd.,Jincheng,Shanxi 048100,China)
出处 《自动化应用》 2024年第21期20-22,共3页 Automation Application
关键词 煤矿安全 机器学习 预警系统 coal mine safety machine learning early warning system
  • 相关文献

二级参考文献33

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部