摘要
为提升电力系统对攻击和异常的检测能力,提出一种基于特征重要性的数据驱动异常检测方法。首先,通过合成少数类样本过采样技术对原始数据进行预处理,调整数据集的平衡性;其次,结合邻域成分分析特征提取和“统计特性融合”特征选择方法对数据集进行特征处理;然后,采用贝叶斯优化对机器学习分类器进行参数调整;最后,在Power System Attack Datasets多类数据集上进行实验验证。实验结果表明,所提方法在电力系统的三分类和多分类数据集上,分别实现了98.97%和95.59%的分类准确率,相较于其他异常检测方法,可以有效区分攻击和故障,且在准确率和误报率上均表现得更好。
To improve the ability of power systems to detect cyberattacks,a data-driven anomaly detection approach is proposed.Firstly,the raw data is balanced by using synthetic minority over-sampling technique.Secondly,neighborhood components analysis feature extraction technology with the “fusion of statistical importance” feature selection method is combined to process the features.Thirdly,the Bayesian optimization is used to fine-tune the parameters of the machine learning classifier.Finally,experiments on the Power System Attack Datasets is conducted.The results demonstrate that the designed system achieves a triple classification accuracy of 98.97% and a multi classification accuracy of 95.59%.Compared to other anomaly detection methods,the proposed approach not only distinguishes between natural faults and cyberattacks effectively but also outperforms in accuracy and false alarm rate.
作者
徐子东
张镇勇
XU Zidong;ZHANG Zhenyong(College of Computer Science and Technology,Guizhou University,Guiyang 550025,China;State Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China)
出处
《控制工程》
CSCD
北大核心
2024年第11期2029-2035,共7页
Control Engineering of China
基金
国家自然科学基金资助项目(62303126,62362008)
贵州省基础研究计划(自然科学)一般项目(黔科合基础-ZK[2022]一般149)
贵州省教育厅高等学校科学研究项目(青年项目)(黔教技[2022]104号)
贵州大学自然科学专项(特岗)科研基金项目(贵大特岗合字(2021)47号)。
关键词
电力系统
异常检测
机器学习
特征工程
Power system
anomaly detection
machine learning
feature engineering