期刊文献+

基于SVM与局部加权的KNN算法的研究与实现

Research and implementation of KNN algorithm based on SVM and locally weighted
下载PDF
导出
摘要 文章主要研究基于SVM与局部加权的KNN算法。在研究过程中,首先分析了KNN算法的基本概念和实现原理。在此基础上,引入SVM模型与局部加权方法对KNN算法进行改进,并将改进后的算法应用于乳腺癌识别的实例研究中。最后,在搭建的理论框架上进行了仿真实验。实验结果表明,与传统KNN算法相比,基于SVM与局部加权的KNN算法通过引入权重机制和SVM模型,在分类性能方面表现出更高的精准度,有效弥补了传统KNN算法在分类性能上的不足,显著提升了目标分类的精度。 The article mainly studies the KNN algorithm based on SVM and local weighting.In the research process,the basic concepts and implementation principles of the KNN algorithm were first analyzed.On this basis,SVM model and local weighting method are introduced to improve KNN algorithm,and the improved algorithm is applied to the case study of breast cancer recognition.Finally,simulation experiments were conducted on the constructed theoretical framework.The experimental results show that compared with the traditional KNN algorithm,the KNN algorithm based on SVM and local weighting exhibits higher accuracy in classification performance by introducing a weight mechanism and SVM model,effectively compensating for the shortcomings of the traditional KNN algorithm in classification performance and significantly improving the accuracy of target classification.
作者 胡文杰 HU Wenjie(School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《计算机应用文摘》 2024年第22期170-172,共3页
关键词 局部加权 KNN算法 SVM模型 目标分类 locally weighted KNN algorithm SVM model target classification
  • 相关文献

参考文献3

二级参考文献32

  • 1杨丽华,戴齐,郭艳军.KNN文本分类算法研究[J].微计算机信息,2006,22(07X):269-270. 被引量:24
  • 2王清,马华,孙静,韩忠东.改进的KNN算法及其在医学图像处理中的应用[J].泰山医学院学报,2006,27(6):564-566. 被引量:5
  • 3COVER T M,HART P E. Nearest neighbor pattern classification [J]. In Trans IEEE Inform Theory, 1967,IT- 13:21 - 27.?A
  • 4CHO T H,CONNERS R W,ARAMAN P A. A comparison of rule-based, K-nearest neighbor, and neural net classifiers for automation [ C ]. Proceedings, Developing and Managing Expert System Programs, 1991, 202 - 209.?A
  • 5DUDANI S A. The distance-weighted k-nearest-neighbor rule [J]. IEEE Trans Syst Man Cyber, 1976, 6:325-327.?A
  • 6VAPNIK V N. The nature of statistical learningtheory[M].NewYork:Springer-Verlag,1995.张学工,译.统计学习理论的本质[M].北京:清华大学出版社,1999.?A
  • 7BURGES J C. A tutorial on support vector machines for pattern recognition [ M ]. Bell Laboratories, Lucent Technologies, Boston, 1997.?A
  • 8KEERTHI S S, SHEVADE S K, BHATTACHARYYA C, et al. Improvements to Platt's SMO algorithm for SVM classifier design[J]. Neural Computation,2001,13(3):637 - 649.?A
  • 9LIN C J. A formal analysis of stopping criteria of decomposition methods for support vector machines[J]. IEEE Transaction on Neural Networks 2002, 13 (5): 1045 - 1052.?A
  • 10LEE J H, LIN C J. Automatic model selection for support vector machines[ EB/OL]. Available from http:∥www. csie.ntu. edu. tw/~ cjlin/papers. html, 2000.?A

共引文献193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部