期刊文献+

A Note on the Entropy for Heisenberg Group Actions on the Torus

原文传递
导出
摘要 In this paper,the entropy of discrete Heisenberg group actions is considered.Let α be a discrete Heisenberg group action on a compact metric space X.Two types of entropies,h and h(α)are introduced,in which h is defined in Ruelle’s way and h(α) is defined via the natural extension of α.It is shown that when X is the torus and α is induced by integer matrices then h is zero and h(α) can be expressed via the eigenvalues of the matrices.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第10期2324-2336,共13页 数学学报(英文版)
基金 Supported by NSFC (Grant Nos. 12171400, 12126102)。
  • 相关文献

参考文献2

二级参考文献32

  • 1Bowen, R.: Entropy for group endomorphisms and homogenuous spaces. Trans. Amer. Math. Soc., 153, 401-414 (1971).
  • 2Cheng, W.-C., Newhouse, S.: Pre-image entropy. Ergodic Theory Dynam. Systems, 25, 1091-1113 (2005).
  • 3Friedland, S.: Entropy of graphs, semi-groups and groups. In: Ergodic Theory of Zd-actions (M. Pollicott and K. Schmidt eds.), London Math. Soc. Lecture Note Ser. 228, Cambridge Univ. Press, Cambridge, 1996, 319-343.
  • 4Geller, W., Pollicott, M.: An entropy for Z2-actions with finite entropy"generators. Fund. Math., 157, 209-220 (1998).
  • 5Huang, W., Ye, X., Zhang, G.: Local entropy theory for a countable discrete amenable group action. J. Funct Anal., 261, 1028 1082 (2011).
  • 6Hurley, M.: On topological entropy of maps. Ergodic Theory Dynam. Systems, 15, 557-568 (1995).
  • 7Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Cambridge Univer- sity Press, Cambridge, 1995.
  • 8Nitecki, Z., Przytycki, F.: Preimage entropy for mappings. Int. J. Bifur. and Chaos, 9, 1815-1843 (1999).
  • 9Nitecki, Z.: Topological entropy and the preimage structure of maps. Real Anal. Exchange, 29, 7-39 (2003/2004).
  • 10Ornstein, D., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math., 48, 1-141 (1987).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部