期刊文献+

基于优化SVMs多传感器融合的石化输油管网泄漏智能监测定位算法

Intelligent Monitoring and Localization Algorithm for Leakage in Petrochemi⁃cal Pipeline Network Based on Optimized SVMs and Multi-Sensor Fusion
下载PDF
导出
摘要 为了实现对石化输油管网泄漏的智能监测与定位,文章提出了一种基于优化支持向量机(SVMs)的多传感器融合算法,用于石化输油管网泄漏的智能监测与定位。该算法融合了压力传感器、流量传感器和气体检测传感器等信息,通过提取奇异值流形特征(SVMF)来表征泄漏故障,并利用改进的果蝇优化算法选择SVMs模型的最优参数。同时,引入Dempster–Shafer证据理论实现多传感器信息的决策层融合,消除了诊断结论的冲突,提高了模型的鲁棒性和准确性。试验结果表明,该算法在石化输油管网泄漏监测与定位方面表现出色,具有广阔的应用前景。 In order to achieve intelligent monitoring and location of leaks in petrochemical oil pipeline networks,this paper proposes a multi-sensor fusion algorithm based on optimized Support Vector Machines(SVMs)for the intelligent monitoring and positioning of leaks in these networks.The algorithm integrates information from pressure sensors,flow sensors,and gas detection sensors,representing leakage faults by extracting Singular Value Manifold Features(SVMF).It employs an improved fruit fly opti-mization algorithm to select the optimal parameters for the SVMs model.Additionally,Dempster-Shafer evidence theory is intro-duced to achieve decision-level fusion of multi-sensor information,resolving conflicts in diagnostic conclusions and enhancing the model′s robustness and accuracy.Experimental results demonstrate that this algorithm performs excellently in the monitoring and location of leaks in petrochemical oil pipeline networks,presenting broad application prospects.
作者 张健 陈兆文 徐顺武 ZHANG Jian;CHEN Zhaowen;XU Shunwu(Fujian Polytechnic Normal University,Fuzhou 350300,China)
出处 《机电技术》 2024年第5期22-25,54,共5页 Mechanical & Electrical Technology
基金 福建省科技计划项目(2023H0024)。
关键词 石化输油管网 泄露监测 多传感器融合 定位算法 证据理论 SVMS Petrochemical oil pipeline network Leak monitoring Multi-sensor fusion Location algorithm Evidence theory SVMs
  • 相关文献

参考文献8

二级参考文献109

  • 1胡振棚,石宇,景东亚,王清标.装配式建筑发展与现存问题研究[J].建筑技术开发,2020,47(6):114-115. 被引量:1
  • 2张梦婷,张亚.装配式建筑的发展现状[J].产业科技创新,2020(17):46-47. 被引量:2
  • 3陈如清,沈士根.基于递归神经网络的旋转机械故障诊断方法[J].振动.测试与诊断,2005,25(3):233-235. 被引量:6
  • 4镇方雄,李跃新.基于改进遗传算法的神经网络优化[J].湖北大学学报(自然科学版),2006,28(4):345-349. 被引量:11
  • 5He Q, Yan R, Kong F, et al. Machine condition monitoring using principal component representations [J]. Mechanical Systems and Signal Processing, 2009,23(2) :446-466.
  • 6JolliHe I J. Principal component analysis[M]. New York : Springer, 1986 : 29-59,363-365.
  • 7Perlibakas V. Distance measures for PCA-based recognition [J ]. Pattern Recognition Letters, 2004, 25..711-724.
  • 8Malhi A, Gao R. PCA-based feature selection scheme for machine defect classification [J]. IEEE Transac- tion on Instrumentation and Measurement, 2004,53: 1517-1525.
  • 9Baydar N, Chen Q, Ball A, et al. Detection of incipi- ent tooth defect in helical gears using multivariate statistics[J]. Mechanical Systems and Signal Process- ing, 2001,151303-321.
  • 10Hu Qiao, He Zhengjia, Zhang Zhousuo, et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble[J]. Mechanical Systems and Signal Processing, 2007,21: 688-705.

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部