摘要
提出一种新型无导数算法,以解决凸约束非线性方程组问题.该算法利用改进的共轭参数设计搜索方向,以确保算法的充分下降性和信赖域特性.在适当的假设下,该算法具有全局收敛性.数值仿真结果表明,该算法在处理凸约束非线性方程组问题和信号重构问题时具有高效性和鲁棒性.
We proposed a novel derivative-free algorithm to solve convex constrained nonlinear equation systems.The algorithm utilized improved conjugate parameters to design a search direction,ensuring sufficient descent and trust region characteristics of the algorithm.Under appropriate assumptions,the algorithm had global convergence.Numerical simulation results show that the algorithm has high efficiency and robustness in handling convex constrained nonlinear equation systems and signal reconstruction problems.
作者
夏艳
李远飞
王松华
李丹丹
XIA Yan;LI Yuanfei;WANG Songhua;LI Dandan(Department of Applied Mathematics,Guangzhou Huashang College,Guangzhou 511300,China;School of Mathematics and Statistics,Baise University,Baise 533000,Guangxi Zhuang Autonomous Region,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第6期1345-1351,共7页
Journal of Jilin University:Science Edition
基金
广西自然科学基金(批准号:2024GXNSFAA010478)
广州华商学院校内导师制项目(批准号:2023HSDS38).
关键词
凸约束非线性方程组
无导数
全局收敛性
信号重构
convex constrained nonlinear equation systems
derivative-free
global convergence
signal reconstruction