摘要
针对传统避障搜索算法在车间物料配送中仅能解决单点配送且未充分考虑多点配送及往返取货需求的问题,提出一种结合遗传算法优化的A^(*)算法.该方法利用A^(*)算法的成本计算方式完成有障碍物条件下各配送点之间的成本计算,并融合遗传算法的迭代寻优特性,实现了对多点配送及往返取货需求的高效稳定全局搜索.通过某车间物料配送的实际算例验证,该改进算法能有效规划障碍环境下的配送路径,显著提升配送效率.
Aiming at the problem that traditional obstacle avoidance search algorithms could only solve single-point distribution and inadequately considered the needs for multi-point distribution and round-trip pickups in workshop material distribution,we proposed an A^(*)algorithm that combined a genetic algorithm optimization.This method employed the cost calculation approach of the A^(*)algorithm to complete cost calculation between various distribution points under obstacle conditions,and integrated the iterative optimization characteristics of the genetic algorithm to achieve efficient and stable global search for multi-point distribution and round-trip pickup requirements.Through the verification of a practical example of material distribution in a certain workshop,the improved algorithm can effectively plan distribution paths in obstacle environments and significantly improve distribution efficiency.
作者
白俊峰
白一辰
席嘉璐
张今尧
BAI Junfeng;BAI Yichen;XI Jialu;ZHANG Jinyao(School of Mechanical and Electrical Engineering,Changchun University of Technology,Changchun 130012,China;School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130025,China;School of Management,College of Humanities and Information Changchun University of Technology,Changchun 130122,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第6期1401-1410,共10页
Journal of Jilin University:Science Edition
基金
吉林省自然科学基金(批准号:YDZJ202201ZYTS545)
长春市工信局项目(批准号:146023).
关键词
路径规划
物料配送
遗传算法
A^(*)算法
栅格环境
path planning
material distribution
genetic algorithm
A^(*)algorithm
grid environment