期刊文献+

耦合地理加权与随机森林的地表温度降尺度

Land Surface Temperature Downscaling in Coupled Geographically Weighted and Random Forests
下载PDF
导出
摘要 针对当前主流地理加权地表温度降尺度算法仅考虑地表温度(land surface temperature,LST)与尺度因子间线性或简单非线性关系的问题,提出了一种利用随机森林表征复杂非线性关系并与GWR耦合(geographically weighted random forest model,GWRF)的LST降尺度框架。GWRF降尺度框架从反射率、光谱指数、地形因子等多种尺度因子中筛选出最佳因子,利用地理加权随机森林方法建立LST与尺度因子间复杂的局部非线性关系,实现1000 m LST降尺度到100 m。以北京和张掖地区作为实验区,并与地理加权回归、非线性地理加权回归、随机森林回归模型进行比较。研究发现,基于GWRF的降尺度模型在所有研究区均表现良好,均方根误差和平均绝对误差均低于其他模型,并且具有更高的决定系数R 2。 A land surface temperature(LST)downscaling framework using random forest to characterise complex nonlinear relationships and coupled with GWR(geographically weighted random forest model,GWRF)is proposed to address the problem that the mainstream geographically weighted LST downscaling algorithm only considers linear or simple nonlinear relationships with scale factors.The GWRF downscaling framework selects the best factors from reflectance,spectral index,topographic factors,etc.,and establishes the complex local nonlinear relationship between LST and scale factors using the geographically weighted random forest method,so as to achieve the downscaling of LST from 1000 m to 100 m.In this study,the experimental areas in Beijing and Zhangye are used as the experimental areas,and the geographically weighted random forest model is used as the experimental area to determine the downscaling of the LST.Compared with the geographically weighted regression(GWR),nonlinear geographically weighted regression(NGWR),and random forest regression(RF)models,it is found that the GWRF-based downscaling model performs well in all the study areas,with the root-mean-square error(RMSE)and mean-absolute error(MAE)lower than those of the other models,and it also has a higher coefficient of determination,R 2.
作者 母仕林 刘灿 罗小波 苟永承 MU Shilin;LIU Can;LUO Xiaobo;Gou Yongchen(Chongqing Engineering Research Center for Spatial Big Data Intelligence Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Ecological Environment Monitoring Center,Chongqing 401147,China)
出处 《遥感信息》 CSCD 北大核心 2024年第5期111-120,共10页 Remote Sensing Information
基金 国家重点研发计划政府间国际科技创新合作项目(2021YFEO194700) 重庆市教委重点合作项目(HZ2021008)。
关键词 地表温度 地理加权 随机森林 降尺度 非线性 land surface temperature geographically weighted random forest spatial downscaling non linearity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部