摘要
Electrospun nanofibrous separators,despite lacking superior mechanical strength,have gained widespread attention with high porosity and facile processing.Herein,utilizing the fact that thermal imidization temperature of poly(amic acid)(PAA)into polyimide(PI)coincides with the pre-oxidation temperature of polyacrylonitrile(PAN)into carbon fiber,we proposed a new cross-electrospinning strategy to obtain a composite nanofibrous separator(PI/oPAN)randomly interwoven by PI and pre-oxidized PAN(oPAN)nanofibers,via synchronously electrospinning the PAA and PAN onto the same collector and then heat-treating for 2 h at 300℃.The resultant PI/oPAN separator was able to preserve high porosity(71.7%),electrolyte wettability and thermal stability of PI nanofibrous membrane,and surprisingly exhibited high mechanical strength,being 3 times of PI,which mainly because of the numerous adhesion points generated by the melting of PAN in the pre-oxidation process.Meanwhile,the polar groups of oPAN and 3D fibrous network enhanced the PI/oPAN separator's ionic conductivity and Li+transference number,rendering the corresponding cell with more stable cycling performance than cells assembled with pure PI,PAN or commercial PP separator.Therefore,this work might provide a new avenue for the ongoing design and further development of LIB separators capable of high safety and high performance.
基金
financially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJA480004)
the Key Laboratory of Flame Retardancy Finishing of Textile Materials,CNTAC(No.Q811580421)。