摘要
A novel multispectral smart window has been proposed,which features dynamic modulation of light transmittance and effective shielding against electromagnetic microwave radiation.This design integrates liquid crystal dynamic scattering and dye doping techniques,enabling the dual regulation of transmittance and scattering within a singlelayer smart window.Additionally,the precise control of conductive film thickness ensures the attainment of robust microwave signal shielding.We present a theoretical model for ion movement in the presence of an alternating electric field,along with a novel approach to manipulate negative dielectric constant.The proposed model successfully enables a rapid transition between light transparent,absorbing and haze states,with an optimum drive frequency adjustable to approximately 300 Hz.Furthermore,the resistive design of the conductive layer effectively mitigates microwave radiation within the 2−18 GHz range.These findings offer an innovative perspective for future advancements in environmental construction.
基金
the financial supports from the National Key Research and Development Program of China(Grant No.2023YFB3811600)
the National Science Fund for Distinguished Young Scholars(Grant No.51625201)
State Key Program of National Natural Science of China(Grant No.52032004)
National Youth Science Funds of China(Grant No.52102039)
Key Research and Development Program of Heilongjiang Province(Grant No.GA21D001,2022ZX06C05)
the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2022011)
the Major Program of Harbin Institute of Technology(Grant NO.2023FRFK01002)
the Fundamental Research Funds for the Central Universities(2022FRFK060026)
the National Youth Science Funds of China(Grant No.52302172).