摘要
本研究聚焦人工智能驱动的消费市场精准营销策略优化,基于消费者行为数据挖掘展开深入探讨。在阐述相关背景、国内外研究现状、目的与意义及方法创新点后,系统梳理人工智能、消费者行为、精准营销理论基础。详细解析消费者行为数据挖掘流程,涵盖数据来源采集、预处理及多种挖掘算法应用。构建以数据挖掘为核心的精准营销策略优化模型,包括消费者画像绘制、营销目标策略生成与效果评估动态调整。通过阿里巴巴案例分析,展示策略成效并总结经验教训。研究总结了成果,分析局限性,展望未来研究方向,旨在为学术领域丰富理论,为企业精准营销实践提供有力指导,推动消费市场精准营销智能化发展。
This study focuses on the optimization of precision marketing strategies in the consumer market driven by artificial intelligence and conducts in-depth discussions based on consumer behavior data mining.After elaborating on the relevant background,the research status at home and abroad,the purpose and significance,as well as the innovative points of the research methods,it systematically sorts out the theoretical foundations of artificial intelligence,consumer behavior,and precision marketing.It also analyzes in detail the process of consumer behavior data mining,covering data source collection,preprocessing,and the application of various data mining algorithms.It constructs a precision marketing strategy optimization model with data mining as the core,including the drawing of consumer portraits,the generation of marketing objectives and strategies,and the dynamic adjustment of effect evaluation.Through the case analysis of Alibaba,it demonstrates the effectiveness of the strategies and summarizes the experiences and lessons.The study summarizes the achievements,analyzes the limitations,and looks forward to the future research directions,aiming to enrich the theories in the academic field,provide powerful guidance for the practice of precision marketing of enterprises,and promote the intelligent development of precision marketing in the consumer market.
作者
赵东星
Zhao Dongxing(Fujian University of Technology,Fujian Fuzhou,350118)
关键词
人工智能
精准营销
消费者行为数据挖掘
策略优化
Artificial Intelligence
Precision Marketing
Consumer Behavior Data Mining
Strategy Optimization