摘要
[目的]为解决生菜分类、分割和鲜重估测独立处理,增加时间成本的问题,本文提出一种端到端的生菜无损鲜重估测模型——LettuceNet。[方法]LettuceNet模型通过分析俯视图像估测生菜鲜重。LettuceNet结合Swin Transformer-Tiny(Swin-T)和UPerNet,有效提取生菜冠层图像的特征。模型设计了基于K-Net的用于语义分割的分割头部网络以及用于鲜重估测的回归头部网络。回归头部网络融合利用Swin-T的特征与分割头部网络的结果,用于生菜的分类和冠层面积统计,使LettuceNet能够同时高效处理语义分割和鲜重估测任务。[结果]2个数据集的试验结果表明,LettuceNet语义分割任务中,其平均像素准确度(MPA)分别为98.01%和98.75%,而平均交并比(MIoU)分别为96.02%和97.63%;在鲜重预测方面,决定系数R 2分别为0.898和0.919,均方根误差(RMSE)分别为0.865和30.814 g,平均绝对百分比误差(MAPE)分别为1.894%和18.194%。[结论]通过输入生菜冠层图像,LettuceNet能够实时且无损完成生菜的分类、分割与鲜重估测,能够快速对生菜的生长情况进行定量分析,为植物工厂的智能管控提供数据支持。
[Objectives]To address the issue of increased time cost due to separate processing of lettuce classification,segmentation,and fresh weight estimation,this paper proposed an end-to-end non-destructive fresh weight estimation model for lettuce,called LettuceNet.[Methods]LettuceNet estimated lettuce fresh weight by analyzing top-view images.The model integrated Swin Transformer-Tiny(Swin-T)and UPerNet to effectively extract features from lettuce canopy images.A K-Net-based segmentation head was designed for semantic segmentation,while a regression head was used for fresh weight estimation.The regression head combined the features extracted by Swin-T with the results of the segmentation head for lettuce classification and canopy area measurement,allowing LettuceNet to efficiently handle both semantic segmentation and fresh weight estimation tasks.[Results]Experiments on two datasets showed that LettuceNet achieved mean pixel accuracy(MPA)of 98.01%and 98.75%,and mean intersection over union(MIoU)of 96.02%and 97.63%,respectively,for the semantic segmentation task.For fresh weight estimation,the coefficient of determination(R 2)was 0.898 and 0.919,the mean squared error(RMSE)was 0.865 and 30.814 g,and the mean absolute percentage error(MAPE)was 1.894%and 18.194%,respectively.[Conclusions]By inputting lettuce canopy images,LettuceNet can perform real-time,non-destructive lettuce classification,segmentation,and fresh weight estimation.The model enables rapid quantitative analysis of lettuce growth,providing data support for intelligent management in plant factories.
作者
孙道宗
张振宇
陈俊聪
琚俊
张铭桂
王卫星
刘厚诚
SUN Daozong;ZHANG Zhenyu;CHEN Juncong;JU Jun;ZHANG Minggui;WANG Weixing;LIU Houcheng(College of Electronic Engineering(College of Artificial Intelligence),South China Agricultural University,Guangzhou 510642,China;College of Horticulture,South China Agricultural University,Guangzhou 510642,China;Guangzhou Key Laboratory for Agricultural Environment and Information Acquisition and Application,Guangzhou 510642,China;Guangdong Provincial Engineering Technology Research Center for Agricultural Environment Information Monitoring,Guangzhou 510642,China)
出处
《南京农业大学学报》
CAS
CSCD
北大核心
2024年第6期1212-1220,共9页
Journal of Nanjing Agricultural University
基金
国家重点研发计划项目(2021YFD2000701)
2023年度广东省科技创新战略专项资金(大学生科技创新培育)(pdjh2023b0081)。
关键词
生菜
无损检测
语义分割
鲜重估测
深度学习
lettuce
non-destructive testing
semantic segmentation
fresh weight estimation
deep learning