摘要
先进的振动控制技术在航空航天及船舶领域具有广泛需求.当前,大多数系统的吸振与隔振设计分离,且现有隔振设计难以有效增强低频线谱隔离.因此,本文针对典型欧拉梁,提出了一种吸隔振一体化设计方法.基于声学超材料的带隙波阻原理,研究了振动在横向和纵向的传播特性及其协同调节规律.结果表明,通过使用波阻隔振器实现多种模态的吸振和隔振,无需额外结构即可高效控制低频和宽带振动.在横向通路中,引入局域共振带隙显著提高了低频隔振效果;在纵向通路中,除了近零及Bragg带隙外,波阻隔振器还能产生多种带隙,实现了低频宽带吸振.研究显示,通过叠加纵向与横向带隙可达成100 Hz内87.3%的带隙占比.采用有限元法验证了解析结果的准确性.研究结果为复杂梁、板、管路、框架等结构的吸隔振一体化设计提供了可行思路.
Advanced vibration control technology is widely needed in the fields of aerospace and shipbuilding.Currently,separate vibration absorption and isolation design of most systems are separated,and existing isolation designs cannot effectively enhance the isolation of low-frequency line spectra.There is an urgent need to develop integrated vibration absorption and isolation designs and strengthen low-frequency line spectrum control.In response to this need,this paper focuses on a typical Euler beam and the investigation of the propagation characteristics of vibrations in transverse direction and longitudinal direction,the principles of integrated vibration absorption and isolation design,and the synergistic regulation of bandgaps,based on acoustic metamaterial bandgap wave-insulating vibration control configurations and analytical methods.Ultimately,without adding additional structures,the wave-insulating vibration control device is used to generate multiple modes of vibration absorption and isolation simultaneously,achieving an integrated lowfrequency,broadband,and high-efficiency vibration absorption and isolation design.This method achieves broadband vibration isolation in the transverse vibration isolation path while also introducing local resonance bandgaps that significantly improve low-frequency vibration isolation.In the longitudinal(forward propagation)path,in addition to near-zero and Bragg bandgaps,multilayer isolators generate multimodal local resonant bandgaps,achieving low-frequency broadband vibration absorption and effective control in the entire frequency range.This paper elucidates the synergistic modulation of longitudinal and transverse bandgaps,showing that by superimposing these bandgaps,an impressive bandgap ratio of 87.3%below 100 Hz across the entire frequency range can be achieved.Furthermore,an entity structure is designed,and the accuracy of the analytical results is verified by using the finite element method.The findings provide feasible design ideas for realizing the integrated vibration absorption and isolation of complex structures such as beams,plates,pipelines,and frames.
作者
魏巍
管峰
方鑫
Wei Wei;Guan Feng;Fang Xin(College of Intelligent Science,National University of Defense Technology,Changsha 410073,China;Naval Research Academy,Beijing 100161,China)
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2024年第22期174-186,共13页
Acta Physica Sinica
基金
国家自然科学基金(批准号:52241103,52322505)
湖南省自然科学基金(批准号:2023JJ10055)资助的课题.
关键词
超材料
带隙
吸振
隔振
metamaterial
bandgap
vibration absorption
vibration isolation