摘要
在基本模糊熵聚类方法(EFC)的基础上加入一个用于统计特征的权重因子,提出一种改进的加权熵聚类方法(W-EFC),并将其应用于电站空气预热器的堵灰监测过程。从测试数据集的聚类结果可以看出,W-EFC具有较好的离群点识别效果,并在一定程度上降低了噪声对数据的影响。继而,以空气预热器历史运行数据为研究对象,完成W-EFC聚类,聚类结果可以获得较长运行时间内不同的工况和不同的性能水平,可为实时运行监测指导提供新思路。
On the basis of the basic fuzzy entropy clustering method(EFC),a weight factor for statistical characteristics was added,and an improved weighted entropy clustering method(W-EFC) was proposed and was employed to monitor blockage of the air pre-heater in a power station.Clustering the data set to show that,the W-EFC has a good effect on outlier identification and it can reduce the noise influence on the data to a certain extent.In addition,through taking the historical operation data of the air pre-heater as the object of research,the W-EFC clustering was completed and through it,different working conditions and different performance levels in a long operation time can be obtained,which provides new ideas for real-time monitoring of the operation.
作者
赵亮
李杰
杨文强
董鹏
顾慧
ZHAO Liang;LI Jie;YANG Wen-qiang;DONG Peng;GU Hui(Huaneng Laiwu Power Generation Co.,Ltd;College of Energy and Power Engineering,Nanjing Institute of Technology)
出处
《化工自动化及仪表》
CAS
2024年第6期1017-1022,共6页
Control and Instruments in Chemical Industry
基金
中国华能集团有限公司总部科技项目基于生产大区数据管理的智能平台群集管理技术研究(批准号:HNKJ22-HF106)资助的课题。
关键词
W-EFC
空气预热器
工况监测
权重因子
增量数据
W-EFC
air pre-heater
working condition monitoring
weight factor
incremental data