期刊文献+

考虑医疗资源影响下的SIS模型动力学性态分析

Dynamics Analysis of a SIS Model with Influence of Medical Resources
下载PDF
导出
摘要 研究了医疗资源影响下的SIS动力学模型.首先,求出了模型的基本再生数.其次,讨论了平衡点的存在性,即若R_(1)<1,R_(0)>1+βb_(0)(d+α)/d(d+α+μ_(0))时,系统有两个正平衡点或者没有正平衡点;当R_(1)>1时,系统存在一个正平衡点,并且证明了平衡点的稳定性.最后,对参数进行了敏感性分析. The SIS epidemic model with the influence of medical resources was built.The basic reproduction number of the model was obtained and the existence of equilibria was discussed.If R_(1)<1,R_(0)>1+βb_(0)(d+α)/d(d+α+μ_(0)),the system had two positive equilibria or no positive equilibrium,if R_(1)>1,the system had a unique positive equilibrium.And the stability of equilibria was discussed.Finally,sensitivity analysis of the parameters was conducted.
作者 张婷婷 ZHANG Ting-ting(School of Information Engineering,Shanxi College of Applied Science and Technology,Taiyuan 030062,China)
出处 《兰州文理学院学报(自然科学版)》 2024年第6期20-23,共4页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词 医疗资源 平衡点 稳定性 medical resources equilibria stability
  • 相关文献

参考文献4

二级参考文献12

  • 1DIEKMANN 0,HEESTERBEEK JAP. Mathematical epidemiology of infectious diseases : model building, analysis and interpretation [ M ]. NewYork: John Wiley & Sons, 2000.
  • 2HETHCOTE H W. The mathematics of infectious diseases[ J]. SIAM Review, 2000 , 42(4) : 599 -653.
  • 3KRIBS-ZALETA C M, VELASCO-HERNANDEZ J X. A simple vaccination model with multiple endemic states [ J ]. Mathematical Biosciences,2000,164(2) : 183 -201.
  • 4ARINO J,MCCLUSKEY C,VAN DEN DRIESSCHE P. Global results for an epidemic model with vaccination that exhibits backward bifurcation[J]. SIAM Joumai on Applied Mathematics, 2003,64( 1 ) : 260 -276.
  • 5ALEXANDER M E, MOGHADAS S M. Periodicity in an epidemic model with a generalized non-linear incidence [ J ]. Mathematical Biosciences,2004,189(1) : 75 -96.
  • 6LIU X N, TAKEUCHI Y,IWAMI S. SVIR epidemic models with vaccination strategies[ J] . Joumai of Theoretical Biology, 2008,253( 1):1 -11.
  • 7XIAO Y N, TANG S Y. Dynamics of infection with nonlinear incidence in a simple vaccination model[ J]. Nonlinear Analysis : Real World Applica-tions, 2010, 11(5) : 4154 -4163.
  • 8MAGPANTAY F M G,RIOLO M A, DE CELLES M D, et al, Epidemiological consequences of imperfect vaccines for immunizing infections [ J]. SI-AM Journal on Applied Mathematics, 2014, 74(6) : 1810 - 1830.
  • 9VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease trans-mission[ J]. Mathematical Biosciences, 2002, 180(1 -2) : 29 -48.
  • 10SHAN C, ZHU H. Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds[ J]. Journal of DifferentialEquations, 2014,257(5) : 1662 -1688.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部