摘要
为了研制面向量子精密测量应用的近红外波段光纤光栅外腔半导体激光器,采用独立设计的高偏振依赖增益芯片和双折射光纤布喇格光栅,通过法布里-珀罗等效谐振腔模型,系统分析了光栅反射率、外腔和芯片长度对激光线宽的影响。结果表明,所研制激光器实现了54.46 mW的输出功率、58.88 dB的边模抑制比和24.46 dB的偏振消光比,利用延迟自外差拍频方法测得的洛伦兹线宽低至2.69 kHz。此研究为独立设计制备分立器件的单频窄线宽外腔半导体激光器提供参考,有望应用于雷达成像、陀螺仪、磁力仪和原子钟等量子精密测量领域。
In order to develop a near-infrared band fiber grating external cavity semiconductor laser for quantum precision measurement applications,a high polarization dependent gain chip and a birefringent fiber Bragg grating were designed independently,the effects of grating reflectivity,external cavity,and chip length on laser linewidth were systematically analyzed based on the Fabry-Pérot equivalent resonant cavity model.The results showe that the developed laser achieves an output power of 54.46 mW,a side mode suppression ratio of 58.88 dB,and a polarization extinction ratio of 24.46 dB.The Lorentz linewidth measured is 2.69 kHz by delayed self-heterodyne beat frequency method.This study provides a reference for the single frequency narrow linewidth external cavity semiconductor lasers with independent design and preparation of discrete devices,and is expected to be used in quantum precision measurement fields such as radar imaging,gyroscopes,magnetometers,and atomic clocks.
作者
陈加齐
陈超
孙晶晶
张建伟
刘朝晖
赵佳欣
杜明远
李向尚
秦莉
宁永强
王立军
CHEN Jiaqi;CHEN Chao;SUN Jingjing;ZHANG Jianwei;LIU Zhaohui;ZHAO Jiaxin;DU Mingyuan;LI Xiangshang;QIN Li;NING Yongqiang;WANG Lijun(State Key Laboratory of Luminescence and Application,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;School of Optoelectronics,University of Chinese Academy of Sciences,Beijing 100049,China;College of Electronic Science and Engineering,Jilin University,Changchun 130012,China;College of Physics,Changchun University of Science and Technology,Changchun 130013,China)
出处
《激光技术》
CAS
CSCD
北大核心
2024年第6期771-776,共6页
Laser Technology
基金
国家自然科学基金资助项目(62374164,62090060)
吉林省科技发展基金资助项目(20220201063GX)
长春市科技发展计划资助项目(22SH01)。
关键词
激光器
窄线宽
延迟自外差拍频
量子精密测量
lasers
narrow linewidth
self-heterodyne beat frequency
quantum precision measurement