摘要
底吹连续处理铅基固废工艺具有多变量、非线性、强耦合、大滞后等特点,基于机理方法进行建模与优化存在困难。对此本文提出了基于数据驱动的熔炼炉原料配料模型,实现关键运行参数的优化控制。首先,基于化验与过程历史数据,使用神经网络建立原料成分与熔炼炉关键工艺指标间的关系模型;在此基础上,,应用粒子群搜索算法,由熔炼炉理想工况指标搜索确定原料中各成分的最优配比;最后,将配料问题建模为含非线性约束的多目标优化问题,并使用SLSQP求解。集成上述建模优化算法,开发了相应的熔炼炉原料管理系统。
The bottom-blowing continuous treatment for lead-based solid waste has the characteristics of multivariability,nonlinearity,strong coupling and large lag,which cause difficulties for mechanism based modelling and optimization.To solve these problems,this paper proposes a data-driven raw material blending model for the smelting furnace,which achieves optimized control for key operating parameters.Firstly,based on laboratory and process historical data,the relationship between raw material composition and key process indicators of the smelting furnace is established by applying neural network;on this basis,the Particle Swarm Optimization algorithm is applied to solve the optimal ratio of each component in the raw material from the ideal operating conditions;finally,the ingredient problem is formulated as a multi-objective optimization problem with nonlinear constraints and then solved by SLSQP.Integrating the above modeling and optimization algorithms,a corresponding raw material management system has been developed.
作者
许潇枫
陈金水
卢建刚
张哲铠
蔡幼忠
李玉珍
XU Xiaofeng;CHEN Jinshui;LU Jiangang;ZHANG Zhekai;CAI Youzhong;LI Yuzhen(College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China;China ENFI Engineering Corporation,Beijing 100038,China;Henan Yuguang Gold Lead Co.,Ltd.,Jiyuan 459000,China)
出处
《有色设备》
2024年第5期91-98,共8页
Nonferrous Metallurgical Equipment
基金
国家重点研发计划-复杂铅基多金属固废协同冶炼技术与大型化装备-协同熔炼过程自适应在线智能优化控制系统(2019YFC1907305)。
关键词
数据驱动建模
熔炼炉控制
优化计算
配料管理系统
铅冶炼
氧化炉
铅基固废
data-driven modelling
smelting furnace control
optimization calculation
ingredient management system
lead smelting
oxidation furnace
lead-based solid waste