摘要
目的系统评价人工智能在真实围术期世界中实施阻碍及促进因素的质性研究。方法计算机检索PubMed、CINAHL、Scopus、Web of Science、ACM Digital library、Cochrane Library、CNKI、WanFang Data、VIP数据库,搜集围术期人工智能临床应用相关研究,检索时限均为建库至2023年12月31日。根据SPIDER模型构建问题,采用JBI流行病学量表对纳入文献进行质量评价,利用NASSS框架对围术期人工智能系统实施过程所挖掘的质性因素进行整合、分析,建立问题条目池。结果共纳入22篇文献,围术期利益相关者主要聚焦在麻醉医生、麻醉护士和外科医生等围术期人工智能技术使用者,围术期人工智能服务内容领域主要以机器人手术为主。JBI评价得分为4~8分。NASSS实施因素框架共形成7个核心主题、27个次级条目。结论围术期人工智能对手术患者预后、医疗质量与效率有正向作用,但其在临床实际应用的过程中会面临采纳者、组织机构、社会文化等方面的影响,使其最终实施效果受到影响。现有围术期人工智能系统在临床实施中的影响因素质性研究存在数量较少、质量中等、未基于系统性的实施因素框架科学开展等问题,开展科学规范的应用研究将对未来围术期人工智能的使用有导向作用,并有望提升其最终服务效果。
Objective To systematically review the qualitative research on the obstacles and promoting factors of artificial intelligence implementation in the real perioperative world.Methods Computer searches were conducted on PubMed,CINAHL,Scopus,Web of Science,ACM Digital Library,Cochrane Library,CNKI,WanFang Data,and VIP databases to collect perioperative studies related to the clinical application of artificial intelligence.The search period was from database establishment until December 31,2023.Based on the SPIDER model,the quality of the included literature was evaluated using the JBI Epidemiological Scale.The NASSS framework was used to integrate and analyze the qualitative factors discovered during the implementation of the perioperative artificial intelligence system,and a problem item pool was established.Results A total of 22 articles were included,and perioperative stakeholders mainly focused on perioperative artificial intelligence technology users such as anesthesiologists,anesthesiologists,and surgeons.The field of perioperative artificial intelligence services mainly focused on robot surgery.The JBI evaluation score was 4-8 points.The NASSS implementation factor framework consisted of 7 core themes and 27 secondary items.Conclusion It is undeniable that perioperative artificial intelligence has a positive impact on the prognosis,medical quality,and efficiency of surgical patients.However,its clinical application will face influences from adopters,organizational structures,social culture,and other aspects,which will ultimately affect its implementation effect.The existing qualitative research on the influencing factors of perioperative artificial intelligence systems in clinical implementation has problems such as limited quantity,moderate quality,and lack of scientific research based on a systematic implementation factor framework.Conducting scientific and standardized application research will have a guiding effect on the future use of perioperative artificial intelligence and is expected to improve its final service effectiveness.
作者
蔡见文
朱涛
李为民
李培艺
CAI Jianwen;ZHU Tao;LI Weimin;LI Peiyi(Department of Anesthesiology,West China Hospital,Sichuan University,Chengdu 610041,P.R.China;Laboratory of Anesthesia and Critical Care Medicine,National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology,West China Hospital,Sichuan University,Chengdu 610041,P.R.China;The Research Units of West China(2018RU012)-Chinese Academy of Medical Sciences,West China Hospital,Sichuan University,Chengdu 610041,P.R.China;Department of Respiratory and Critical Care Medicine,West China Hospital,Sichuan University,Chengdu 610041,P.R.China;Institute of Respiratory Health,Frontiers Science Center for Disease-related Molecular Network,West China Hospital,Sichuan University,Chengdu 610041,P.R.China;State Key Laboratory of Respiratory Health and Multimorbidity,West China Hospital,Sichuan University,Chengdu 610041,P.R.China)
出处
《中国循证医学杂志》
CSCD
北大核心
2024年第11期1284-1293,共10页
Chinese Journal of Evidence-based Medicine
基金
国家自然科学基金项目(编号:72204174、91859203)
四川省科技厅项目(编号:2020YFG0473)
中国博士后科学基金项目(编号:2022M722262)
四川大学博士后项目(编号:2024SCU12026)
四川大学华西医院博士后项目(编号:2023HXBH009)
四川大学华西医院卓越学科1·3·5项目(编号:ZYJC21008)
四川省自然科学基金项目(编号:2023NSFSC0512)
CAMS医学科学创新基金项目(编号:2023-I2M-C&T-B-122)。
关键词
人工智能
围术期
质性研究
系统评价
Artificial intelligence
Perioperative period
Qualitative research
Systematic review