摘要
[目的/意义]文章旨在构建一个标准化视角下覆盖多维度和多方面要素的大模型数据治理的理论框架,以填补当前大模型数据治理专门性研究和标准化研究的空白,丰富大模型数据治理的理论研究内容,并为实际应用提供参考。[方法/过程]综合采用内容分析法和专家咨询法,对国内外相关标准、中英文代表性期刊文献进行系统梳理和分析,迭代优化并构建大模型数据治理的理论框架。[结果/结论]大模型数据治理的理论框架涵盖多个维度,包括大模型数据质量管理、大模型数据管理、大模型数据资源管理、大模型数据资产管理、大模型数据风险管理。五个维度沿着“基础前提-执行方式-实施路径-核心目标-内在保障”的逻辑构成理论框架。
[Purpose/significance]This study aims to build a theoretical framework for large model data governance from a standardization perspective,covering multidimensional and multifaceted elements.This framework seeks to fill in current gaps in specialized research and standardization research on large model data governance,which will enrich theoretical research on large model data governance and provide implications to practices.[Method/process]By holistic approach to content analysis and expert consultation,this study systematically reviews and analyzes relevant standards and representative Chinese and English journal literature,iteratively refining and constructing a theoretical framework for large model data governance.[Result/conclusion]The theoretical framework for large model data governance covers multiple dimensions,including large model data quality management,large model data management,large model data resource management,large model data asset management,and large model data risk management.These five dimensions are structured along with the logical progression of"fundamental premises-execution methods-implementation pathways-core objectives-intrinsic guarantees",forming a comprehensive theoretical framework.
作者
安小米
龙志奇
邝苗苗
An Xiaomi;Long Zhiqi;Kuang Miaomiao(School of Information Resource Management,Renmin University of China,Beijing,100872;Smart City Research Center,Renmin University of China,Beijing,100872;Key Laboratory of Data Engineering and Knowledge Engineering,Ministry of Education,Beijing,100872)
出处
《情报资料工作》
CSSCI
北大核心
2024年第6期75-83,共9页
Information and Documentation Services
基金
国家社会科学基金重大项目“我国政府数据治理与利用能力研究”(批准号:20&ZD161)的阶段性成果之一。
关键词
大模型数据治理
理论框架
构成要素
标准化视角
内容分析
large model data governance
theoretical framework
constituent elements
standardization perspective
content analysis