期刊文献+

基于强跟踪的自适应PHD-SLAM算法 被引量:1

Adaptive PHD-SLAM Algorithm Based on Strong Tracking
下载PDF
导出
摘要 同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术使移动机器人在缺乏先验环境信息的条件下,能够在估计自身位姿的同时构建环境地图。然而,在海洋、矿洞等复杂环境中,移动机器人容易受到随机突变噪声的干扰,进而导致SLAM性能下降。现有的概率假设密度(Probability Hypothesis Density,PHD)SLAM算法未考虑随机突变噪声,受到干扰时在线自适应调整能力较弱。为解决移动机器人因随机突变噪声导致状态估计和建图精度降低的问题,本文结合强跟踪滤波器(Strong Tracking Filter,STF)与PHD滤波器,提出了一种基于强跟踪的自适应PHD-SLAM滤波算法(Strong Tracking Probability Hypothesis Density Simultaneous Localization and Mapping,STPHD-SLAM)。该算法以PHD-SLAM为框架,针对过程噪声协方差和量测噪声协方差随机突变问题,本文通过在特征预测协方差中引入STF中的渐消因子,实现了对特征预测的自适应修正和卡尔曼增益的动态调整,从而增强了算法的自适应能力。其中渐消因子根据量测新息递归更新,确保噪声突变时每个时刻的量测新息保持正交,从而充分利用量测信息,准确并且快速地跟踪突变噪声。针对渐消因子激增导致的滤波器发散问题,本文对渐消因子进行边界约束,提高算法的鲁棒性。仿真结果表明,在量测噪声协方差和过程噪声协方差随机突变的情况下,所提算法相较于PHD-SLAM 1.0和PHD-SLAM 2.0的定位和建图精度都得到了提高,同时保证了计算效率。 Simultaneous localization and mapping technology enables mobile robots to estimate their positions while constructing an environmental map in the absence of prior environmental information.This crucial capability has broad applications,including autonomous navigation,search and rescue operations,and exploration tasks.However,in complex environments,such as oceans,mines,and other challenging terrains,mobile robots are susceptible to interference from random,abrupt noise.This interference,in turn,resulted in a significant decline in SLAM performance as the robots struggled to estimate their positions and map the environment accurately.The probability hypothesis density SLAM algorithm did not adequately account for random abrupt noise,which led to weaker online adaptive adjustment capabilities when disturbed.This limitation hindered the ability of the robot to adapt to sudden changes in the environment,reducing the overall effectiveness of the SLAM process.This study proposed a novel strong tracking probability hypothesis density simultaneous localization and mapping filtering algorithm to address the critical issue of reduced state estimation and mapping accuracy in mobile robots due to random,abrupt noise.This innovative approach integrated the strong tracking filter with the PHD filter,leveraging the strengths of both methods.Built on the PHD-SLAM framework,the proposed algorithm specifically addresses the issue of random,abrupt changes in process noise covariance and measurement noise covariance.These abrupt changes could arise from various sources,including sensor malfunctions,sudden environmental changes,and unexpected dynamic obstacles.The study introduced the fading factor from the strong tracking filter into the feature prediction covariance,achieved adaptive correction of feature predictions,and dynamically adjusted the Kalman gains.This enhancement significantly improved the adaptability of the algorithm to changing conditions,enabling it to maintain accurate localization and mapping performance even in the presence of random,abrupt noise.The fading factor was recursively updated based on the measurement innovation.This approach ensured that the measurement innovation at each time step remained orthogonal when noise mutations occurred,thereby fully utilizing measurement information.Consequently,the algorithm could accurately and rapidly track abrupt noise changes,enhancing its robustness and reliability.Additionally,in response to the filter divergence issue caused by the sharp increase in the fading factor,this study imposed boundary constraints on the fading factor.These constraints were designed to prevent excessive values,which could otherwise lead to filter instability and divergence.Simulation results indicated that,in the scenario where random fluctuations occurred in both measurement noise covariance and process noise covariance,the proposed algorithm enhanced localization accuracy and significantly improved mapping precision when compared to the traditional PHD-SLAM 1.0 and the more advanced PHD-SLAM 2.0 algorithms.Additionally,this improvement in accuracy did not come at the expense of computational efficiency;the proposed algorithm maintained high levels of computational efficiency,ensuring it remained practical for real-time applications.These results demonstrated the robustness and effectiveness of the proposed algorithm in handling unpredictable noise variations while delivering superior performance in both localization and mapping tasks.
作者 邓洪高 韦凯玲 吴孙勇 邹晗 李明 纪元法 孙少帅 DENG Honggao;WEI Kailing;WU Sunyong;ZOU Han;LI Ming;JI Yuanfa;SUN Shaoshuai(School of Information and Communication,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;National&Local Joint Engineering Research Center of Satellite Navigation Positioning and Location Service,Guilin,Guangxi 541004,China;Guilin Key Laboratory of Cryptography and Information Security,Guilin,Guangxi 541004,China;School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;Guilin Changhai Development Limited Liability Company,Guilin,Guangxi 541004,China)
出处 《信号处理》 CSCD 北大核心 2024年第11期2074-2084,共11页 Journal of Signal Processing
基金 国家自然科学基金(62263007,U23A20280,62161007) 广西重点研发项目(桂科AB23026147) 认知无线电与信息处理教育部重点实验室基金(CRKL210101) 桂林电子科技大学研究生教育创新计划项目(2024YCXS116) 广西高校数据分析与计算重点实验室开放基金 广西应用数学中心(桂林电子科技大学)开放基金(桂科AD23023002) 广西科技厅项目(桂科AA23062038,桂科AD22080061,桂科AB23026120,桂科ZY22096026)。
关键词 同时定位与建图 概率假设密度 强跟踪 渐消因子 simultaneous localization and mapping probability hypothesis density strong tracking fading factor
  • 相关文献

参考文献5

二级参考文献32

  • 1宋慧波,高梅国,田黎育,毛二可,顾文彬.一种基于动态规划法的雷达微弱多目标检测方法[J].电子学报,2006,34(12):2142-2145. 被引量:16
  • 2Bar-Shalom Y, Li X R. Multitarget-muhisensor tracking: principles and techniques [ M ]. Storrs, CT: YBS Pub- lishing, 1995.
  • 3Bar-Shalom Y, Fortmann T E. Tracking and data associa- tion[M]. San Diego, CA: Academic Press, 1958.
  • 4Mahler R. Random sets: unification and computation for information fusion-A retrospective assessment [ C ]//Pro- ceeds of the 7th International Conference on Information Fusion. Stockholm, Sweden, 2004 : 1-20.
  • 5Mahler R. Multi-target Bayes filtering via first-order multi- target moments[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
  • 6Mahler R. PHD filters of higher order in target number [J ]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4) : 1523-1543.
  • 7Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets [J ]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4) : 1224-1245.
  • 8Vo B N, Ma W K. The Gaussian mixture probability hy- pothesis density filter [ J ]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.
  • 9Blackman S, Popoli R. Design and Analysis of Modem Tracking Systems[ M]. Boston, Arteeh House, 1999.
  • 10Ristie B, Vo B N, Clark D, et al. A Metric for Perform-ance Evaluation of Multi-Target Tracking Algorithms[ J]. IEEE Transactions Signal Processing, 2011, 59 ( 7 ) : 3452-3457.

共引文献18

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部