摘要
由于水下环境的复杂性,存在目标重叠和遮挡等情况,为解决这个问题,文章在YOLOv5s的基础上进行改进提出了CO_YOLO,通过将C3替换为C3_ODConv,减少模型的计算量,加入了CBAM注意力机制可以增强模型的特征提取能力,同时。实验结果表明CO_YOLO对海洋生物目标检测有很好的效果,在URPC2020数据集上比YOLOv5s有更好的效果,mAP50达到0.828,计算量GFLOPs为16.5。
Due to the complexity of underwater environment,objects overlap and occluding ex-ist.In order to solve this problem,this paper improved on the basis of YOLOv5s and proposed CO_YOLO.By replacing C3 with C3_ODConv,the computational load of the model was re-duced,and CBAM attention mechanism was added to cnhance feature extraction capability of the model.The experimental results show that CO_YOLO has a good effect on Marine biological target detcction,and has a better effect than YOLOv5s on URPC2020 data set,with mAP50 reaching 0.828 and GFLOPs reaching 16.5.
作者
张俊恒
司亚超
郑孟然
ZHANG Junheng;SI Yachao;ZHENG Mengran(Hebei Institute of Architecture and Civil Engineering,Zhangjiakou Hebei 075000)
出处
《长江信息通信》
2024年第10期69-71,82,共4页
Changjiang Information & Communications