摘要
本研究提出了一种基于火焰图像识别技术的材料单体燃烧性能评定新方法。针对现有燃烧测试方法的局限性,如过程参量测定不足和测试规模影响,利用图像识别技术测量单体燃烧试验中火焰的变化规律,建立了建材燃烧发热功率与火焰发光像素面积之间的映射关系。试验中,使用基于树莓派和IMX477R摄像头模块的智能摄像系统,通过OpenCV和Python算法对火焰图像进行处理,实现了火焰像素数量的量化。通过FDS模拟不同燃烧功率的火焰,并与试验数据对比,验证了所提方法的可行性。结果显示,在相同观察角度下,火焰燃烧功率与白色像素数量之间存在接近线性的关系。此外,基于视觉分析的燃烧性能等级判定,以60 kW燃烧能量作为安全阈值,能够快速区分难燃和可燃材料。
In this study,a new method for evaluating the combustion performance of material monomers based on flame image recognition technology was proposed.In view of the limitations of the existing combustion test methods,such as insufficient measurement of process parameters and the influence of test scale,we used image recognition technology to measure the variation law of flame in the single burning item test(SBI),and established the mapping relationship between the combustion heating power of building materials and the area of flame luminous pixels.In the experiment,an intelligent camera system based on the Raspberry Pi and IMX477R camera module was used to process the flame image through OpenCV and Python algorithms,and the number of flame pixels was quantified.The FDS simulation software was used to simulate the flames with different combustion powers,and compared with the experimental data,the feasibility of the proposed method was verified.The results show that there is a nearly linear relationship between the flame burning power and the number of white pixels at the same viewing angle.In addition,the combustion performance level judgment based on visual analysis uses 60 kW of combustion energy as the safety threshold,which can quickly distinguish between refractory and combustible materials.
作者
赵成刚
施初阳
荣建忠
Zhao Chenggang;Shi Chuyang;Rong Jianzhong(Sichuan Fire Science and Technology Research Institute of the MEM,Sichuan Chengdu 610036,China;Centre Testing International Corporation(Hangzhou)Co.,Ltd.,Zhejiang Hangzhou 310018,China)
出处
《消防科学与技术》
CAS
北大核心
2024年第11期1512-1516,共5页
Fire Science and Technology
基金
应急管理部四川消防研究所基科费研究项目(Z20248806)。
关键词
燃烧性能
热释放速率
火焰图像识别
单体燃烧试验
像素面积
combustibility
heat release rate
flame image recognition
single burning item(SBI)
pixel area