期刊文献+

融合属性偏好和多阶交互信息的可解释评分预测研究

Research on Explainable Rating Prediction by Fusing Attribute Preference and Multi-order Interaction Information
下载PDF
导出
摘要 已有推荐系统主要基于用户-项目交互矩阵来学习用户和项目的向量表示,而当交互矩阵稀疏时,推荐系统的精度较低,推荐的结果缺乏可解释性.考虑到用户-项目交互行为中的评分标签信息,提出了一种融合属性偏好和多阶交互信息的可解释评分预测方法,并根据属性偏好对推荐结果进行解释.首先,基于注意力机制分析了用户和项目属性信息与评分标签的关系,建模了节点的属性偏好特征表示;然后,聚合了用户-项目交互矩阵中节点自身、交互邻居和评分标签信息,通过图神经网络学习了节点的多阶交互行为特征表示;最后,融合了节点的属性偏好特征和交互行为特征,在异质类型信息空间下学习了用户和项目的语义特征表示,利用多层感知机实现了评分预测,并在MovieLens和Douban数据集上验证了方法的有效性.实验结果表明,所提方法在平均绝对误差(Mean absolute error,MAE)和均方根误差(Root mean square error,RMSE)指标上有效提高了推荐系统的精度,缓解了数据稀疏场景下推荐模型性能较低的问题,提升了推荐结果的可解释性. Existing recommender systems mainly learn the vector representation of users and items based on their interaction matrix.However,when the interaction matrix is sparse,the accuracy of recommender systems is low and the recommendation results lack explanation.Considering the rating tag information from user-item interaction behaviors,this paper proposes an explainable rating prediction method by fusing attribute preference and multi-order interaction information,and explains the recommendation results through the attribute preference.First,based on the attention mechanism,we analyze the relationship between attribute information and rating tags for users and items,and model the attribute preference embedding of nodes.Second,by aggregating information about nodes,interactive neighbors and rating tags from user-item interaction matrix,we learn the multi-order interaction behavior embedding of nodes with graph neural networks.Finally,after fusing attribute preference embedding and interaction behavior embedding of nodes,the semantic embeddings of users and items are learned in the heterogeneous typespecific spaces.We make the rating prediction through the multi-layer perceptron and verify the validity of the method on the MovieLens and Douban datasets.The experimental results show that the proposed method can effectively improve the accuracy of recommender systems in mean absolute error(MAE)and root mean square error(RMSE)indexes,which alleviates the problem of poor performance of the model in the scenario of sparse data,and improves the interpretation of recommendation results.
作者 郑建兴 李沁文 王素格 李德玉 ZHENG Jian-Xing;LI Qin-Wen;WANG Su-Ge;LI De-Yu(Institute of Intelligent Information Processing,Shanxi University,Taiyuan 030006;School of Computer and Information Technology,Shanxi University,Taiyuan 030006)
出处 《自动化学报》 EI CAS CSCD 北大核心 2024年第11期2231-2244,共14页 Acta Automatica Sinica
基金 国家自然科学基金(61632011,62076158,62072294,61603229) 山西省自然科学基金(20210302123468)资助。
关键词 属性偏好 多阶交互信息 注意力机制 可解释推荐 Attribute preference multi-order interaction information attention mechanism explainable recommendation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部