摘要
High-performance field-effect transistors (FETs) based on atomically thin two-dimensional (2D) semiconductors have demonstrated great promise in post-Moore integrated circuits. However, unipolar p-type 2D semiconductor transistors yet remain challenging and suffer from low saturation current density (less than 10 µA·µm^(−1)) and high contact resistance (larger than 100 kΩ·µm), mainly limited by the Schottky barrier induced by the mismatch of the work-functions and the Fermi level pinning at the metal contact interfaces. Here, we overcome these two obstacles through van der Waals (vdW) integration of high work-function metal palladium (Pd) as the contacts onto monolayer WSe2 grown by chemical vapor deposition (CVD) method. We demonstrate unipolar p-type monolayer WSe2 FETs with superior device performance: room temperature on-state current density exceeding 100 µA·µm^(−1), contact resistance of 12 kΩ·µm, on/off ratio over 107, and field-effect hole mobility of ~ 103 cm2·V^(−1)·s^(−1). Electrical transport measurements reveal that the Fermi level pinning effect is completely effectively eliminated in monolayer WSe2 with vdW Pd contacts, leading to a Schottky barrier-free Ohmic contact at the metal-semiconductor junctions. Combining the advantages of large-scale vdW contact strategy and CVD growth, our results pave the way for wafer-scale fabrication of complementary-metal-oxide-semiconductor (CMOS) logic circuits based on atomically thin 2D semiconductors.
基金
financially supported by the National Natural Science Foundation of China(No.12174444)
M.Zhu acknowledges the fruitful discussion with Dr.Jinbao Jiang at National University of Defense Technology.