期刊文献+

Theoretical investigations on hydroxyl carbon precursor fueled growth of graphene on transition metal substrates

原文传递
导出
摘要 Transition metal catalyzed chemical vapor deposition (CVD) is considered as the most promising approach to synthesize highquality graphene films, and low-temperature growth of defect-free graphene films is long-term challenged because of the high energy barrier for precursor dissociation and graphitization. Reducing the growth temperature can also bring advantages on wrinkle-free graphene films owing to the minimized thermal expansion coefficient mismatch. This work focuses on density functional theory (DFT) calculations of the carbon source precursor with hydroxyl group, especially CH_(3)OH, on low-temperature CVD growth of graphene on Cu and CuNi substrate. We calculated all the possible cleavage paths for CH_(3)OH on transition metal substrates. The results show that, firstly, the cleavage barriers of CH_(3)OH on transition metal substrates are slightly lower than those of CH_(4), and once CO appears, it is difficult to break the C-O bond. Secondly, the CO promotes a better formation and retention of perfect rings in the early stage of graphene nucleation and reduces the edge growth barriers. Thirdly, these deoxidation barriers of CO are reduced after CO participates in graphene edge growth. This paper provides a strategy for the lowtemperature growth of wrinkles-free graphene on transition metal substrates using CH_(3)OH.
出处 《Nano Research》 SCIE EI CSCD 2024年第11期10235-10241,共7页 纳米研究(英文版)
基金 supported by the National Natural Science Foundation of China(No.T2188101) Beijing National Laboratory for Molecular Science(No.BNLMS-CXTD-202001) National Key R&D Program of China(No.2018YFA0703502).
  • 相关文献

参考文献3

二级参考文献8

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部