摘要
为了提升心率计算在不同光照和运动条件下的准确率,提出了一种基于深度时空特征模型的创新方法——非接触式心率计算方法:对输入的人脸视频分别利用卷积神经网络(CNN)提取空间特征和利用长短期记忆网络(LSTM)提取时序特征,将这两种特征融合之后,模型对微弱的血液容积脉冲(BVP)信号展现出更强的表征能力.在自采的ZJXU-Phys数据集上进行验证,新方法在各种条件下均表现出色,其有效性和实用性得到了验证.
In order to improve the accuracy of heart rate calculation under different lighting and exercise conditions,we propose an innovative non-contact heart rate calculation method based on a deep spatiotemporal feature model.We use convolutional neural networks(CNN)to extract spatial features from the input face video,and long short-term memory networks(LSTM)to extract temporal features.By fusing these two features,our model exhibits a stronger representation ability for weak blood volume pulse(BVP)signals.To verify the effectiveness of this method,we conduct experiments on the self-collected ZJXU-Phys dataset,and the experimental results show that the proposed method performs well under various conditions,verifying its effectiveness and practicality.
作者
乔圣洋
徐慧英
朱信忠
周宇豪
魏远旺
张峻嘉
Qiao Shengyang;Xu Huiying;Zhu Xinzhong;Zhou Yuhao;Wei Yuanwang;Zhang Junjia(School of Computer Science and Technology,Zhejiang Normal University,Jinhua,Zhejiang 321004;College of Information Science and Engineering,Jiaxing University,Jiaxing,Zhejiang 314001;Research Institute of Information Network&Artificial Intelligence,Jiaxing University,Jiaxing,Zhejiang 314001;China MCC20 Group Corp.,Ltd,Baoshan,Shanghai 201900)
出处
《嘉兴大学学报》
2024年第6期36-45,共10页
Journal of Jiaxing University
基金
国家自然科学基金项目(62376252)
浙江省自然科学基金重点项目(LZ22F030003)
嘉兴市级公益性研究计划项目(2023AY11030)
嘉兴学院大学生科研训练(SRT)计划项目(8517231499)。