摘要
针对铝壳体生产线的持续精益优化问题,设计了基于实时数据驱动的数字孪生系统框架的动态价值流改善方案。由实体层、数据层、模型层及服务层组成的数字孪生系统,实时感知、集成、传输、存储和处理生产过程数据,依托规则、行为及可视化三种模型刻画生产要素间的关系,进而驱动价值流图的动态更新,实现从微观离散数据到整体趋势结果的分析。最后,通过S公司汽车变速箱铝壳体生产线实例,验证了文中所提出的动态价值流改善方案的可行性与有效性。
In order to achieve continuous lean optimization of the aluminum shell production line,a dynamic value stream improvement scheme based on a real-time data-driven digital twin system framework is designed.The digital twin system comprises an entity layer,a data layer,a model layer and a service layer.It enables real-time perception,integration,transmission,storage and processing of production process data.By utilizing three models,i.e.rules,behavior and visualization,the relation among production factors is described,facilitating the dynamic update of the value stream map for analyzing micro discrete data to overall trend results.Finally,the proposed dynamic value stream improvement scheme is validated through an example involving the aluminum shell production line in S Company’s automobile transmission.
作者
王冠
李悦
王亚宁
WANG Guan;LI Yue;WANG Yaning(School of Economics and Management,Hebei University of Science and Technology,Shijiazhuang 050000,China)
出处
《机械设计与研究》
CSCD
北大核心
2024年第5期235-241,247,共8页
Machine Design And Research
关键词
数字孪生
价值流图
精益改善
持续优化
铝壳体生产线
digital twin
value stream map
lean improvement
continuous optimization
aluminum shell production line