期刊文献+

基于社会物理信息系统的异质电动汽车充电优化策略

Charging Optimization Strategy of Heterogeneous Electric Vehicles Based on Cyber-Physical-Social Systems
下载PDF
导出
摘要 本文指出随着电动汽车的快速发展,电动汽车对电网的影响及其在电力系统调度和需求侧响应方面的潜力非常值得关注;具有异质电动汽车的智能电网已经成为社会-物理-信息系统(CPSS)。本文根据异质电动汽车充电数据和行为分析,建立了基于改进的多目标粒子群算法的充电优化模型。仿真结果表明,该模型能够综合考虑电网负载能力和电动汽车用户充电需要,以充电站利润最大化、减小电网波动为目标,有效地实现了电动汽车用户、充电站和电网的充放电需求。 This paper points out that with the rapid development of electric vehicles(EVs),the impact of electric vehicles on the grid and their potential in power system scheduling and demand-side response are of great concern;a smart grid with heterogeneous electric vehicles has become a Cyber-Physical-Social System(CPSS).Based on heterogeneous EV charging data and behavior analysis,a charging optimization model based on improved multi-objective particle swarm optimization(PSO)algorithm is established in this paper.The simulation results show that the model can comprehensively consider the load capacity of the power grid and the charging needs of EV users,and effectively realize the charging and discharging needs of EV users,charging stations and the power grid,with the goal of maximizing the profit of charging stations and reducing the fluctuations of the power grid.
作者 许昕 XU Xin(School of Automation,Zhongkai University of Agriculture and Engineering,Guangzhou 510220,China)
出处 《科技创新与生产力》 2024年第11期22-25,30,共5页 Sci-tech Innovation and Productivity
基金 广东省教育厅重点领域专项(2023ZDZX4018)。
关键词 智能电网 电动汽车 V2G 物理信息系统 粒子群算法 smart grid electric vehicle V2G Cyber-Physical System particle swarm optimization
  • 相关文献

参考文献5

二级参考文献70

  • 1刘青,刘倩,杨建平,张江山,高山,李强笃,王宝,王柏琳,李铁克.炼钢-连铸生产调度的研究进展[J].工程科学学报,2020,42(2):144-153. 被引量:21
  • 2张建科,刘三阳,张晓清.改进的粒子群算法[J].计算机工程与设计,2007,28(17):4215-4216. 被引量:32
  • 3Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51
  • 4Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86
  • 5van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002
  • 6Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109
  • 7Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121
  • 8Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998
  • 10Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949

共引文献595

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部