期刊文献+

机器学习驱动的农产品进销决策--以新疆棉为例

Machine Learning-driven Purchase-sale Decision-making for Agricultural Products--A Case of Xinjiang Cotton
原文传递
导出
摘要 我国是农产品生产和消费大国。近年来,基差交易成为大宗农产品的主要交易形式。由此,农产品经销企业面临采购和基于基差的销售定价决策。然而,不同于工业产品,农产品存在显著的规格不一致问题,给决策带来了困难。为此,首先,构建了基于基差的农产品进销两阶段非线性随机规划模型;其次,对模型进行线性化处理,并设计L-shaped算法以求解模型的最优解;然后,利用历史期货价格和交易状况大数据沉淀,采用多种机器学习方法预测模型所需的随机场景,实现了“从预测到决策”的研究;最后,以新疆棉为例,基于某经销企业实际数据开展实例应用与分析。本研究有助于提升大宗农产品交易效率和效益,并为包括新疆棉的我国棉花产销决策提供了科学支持。 China is a substantial producer and consumer of agricultural products.In recent years,basis trading has become one of the main trading ways of bulk agricultural products.Agricultural distributors face the decision-making on purchase quantity and sale pricing based on basis trading.However,different from industrial products,there is a significant issue of inconsistent specifications in agricultural products,which brings difficulties to decision-making.Firstly,a two-stage non-linear stochastic programming model was developed for the purchase-sales of agricultural products based on basis.Secondly,the model was linearized,and an L-shaped algorithm was designed to give the optimal solution.Thirdly,based on big data of historic futures prices and trading information,multiple machine learning approaches were employed to forecast scenarios that the model required.Thus,the study“from predictive to perspective”was implemented.Finally,the proposed approach was applied to address the real-world case of a trading company for Xinjiang cotton.The results can help to improve the effectiveness and profit of bulk agricultural product trading and provide scientific support to the decision-making of cotton trading in our country,including Xinjiang cotton.
作者 冯景 王长军 杨东 吴会俊 FENG Jing;WANG Changjun;YANG Dong;WU Huijun(Glorious Sun School of Business and Management,Donghua University,Shanghai 200051,China;Shandong Qilu International Cotton Trading Company,Jinan,Shandong 250300,China)
出处 《工业工程与管理》 CSCD 北大核心 2024年第5期94-103,共10页 Industrial Engineering and Management
基金 国家自然科学基金项目(71971053,71832001) 教育部人文社科规划项目(24YJAZH166) 中央高校基本科研业务费专项资金服务管理与创新基地项目(2232018H-07)。
关键词 农产品 新疆棉 基差交易 机器学习 随机规划 L-shaped算法 agricultural products Xinjiang cotton basis trading machine learning stochastic programming L-shaped algorithm
  • 相关文献

参考文献9

二级参考文献80

  • 1李洪江,冯敬海.交割地点选择权与商品期货合约升贴水设置[J].大连理工大学学报,2005,45(6):912-915. 被引量:3
  • 2文平.损失厌恶的报童-预期理论下的报童问题新解[J].中国管理科学,2005,13(6):64-68. 被引量:52
  • 3COTTON No.2 DELIVERER'S & RECEIV- ER'S GUIDE https://www.theice.com/publicdocs/fu- tures_us_reports/cotton/Cotton_Deliverers_Guide.pdf.
  • 4Su L H. A hybrid two-stage flow-shop with limited waiting time constraints[J]. Computers and Industrial Engineer, 2003 (44) : 409-424.
  • 5Chen J S, Yang J S. Model formulations for the machine scheduling probIem with limited waiting time constraints[J]. Journal of Information and Optimization Sciences, 2006,27 ( 1 ) : 225-240.
  • 6BehnamianJ, Zandieh M. A discrete colonial competitive algorithm for hybrid flowshop scheduling to minimize earliness and quadratic tardiness penalties [J]. Expert Systems with Applications, 2011,38(12) : 14490-14498.
  • 7Yang D L, Chern M S. A two-machine flowshop sequencing problem with limited waiting time constraints[J]. Computers g Industrial Engineering,1995,28(1) :63-70.
  • 8Mazdeh M M, Rostami M. A branch and-bound algorithm for two-machine flow-shop scheduling problems with batch delivery costs[J]. International Journal of Systems Science: Operations I Logistics, 2014,1 (2) .- 94-104.
  • 9Li T, Li Y. Constructive backtracking heuristic for hybrid flowshop scheduling with limited waiting times. Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007. International Conference on. IEEE, 2007. 6671- 6674[-C. Shanghai IEEE, 2007.
  • 10Liu S, Cui J, Li Y. Heuristic tabu algorithm for hybrid flowshop scheduling with limited waiting time, Computational Intelligence and Design, 2008. ISCID' 08. International Symposium on. C. Wuhan: IEEE, 2008.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部