摘要
堆石混凝土坝施工过程质量控制的关键是浇筑密实度,其不仅决定于自密实混凝土工作性能,也与堆石体中的空隙性质密切相关。快速获取堆石粒径级配可以保障浇筑质量的同时,有利于进一步降低成本。现场的堆石数量巨大,依靠手工测量块石粒度不切实际,依靠图像识别技术快速获取堆石粒径是可行的办法。利用MaskR-CNN算法和大模型Segment Anything算法,设计了一套完整的、可操作的获取现场堆石粒径级配曲线的方法。该级配计算方法利用了MaskR-CNN算法和Segment Anything算法各自的优势,提高了堆石料粒径识别结果的准确性,拓展了堆石粒径识别的应用场景。将该方法应用于某堆石混凝土拱坝施工现场,取得了良好效果。
The construction quality control of rock-filled concrete dams is heavily dependent on pouring compactness,which is influenced by the workability of self-compacting concrete and the voids between rocks.The particle size distribu-tion(PSD)must be rapidly obtained to ensure compactness and reduce costs.Since manual measurement of particle size is impractical due to the large volume of rocks,this study presents an algorithm combining Mask R-CNN,and the Seg-ment Anything Model to determine the PSD of rocks through image recognition.The advantages of both Mask R-CNN and the Segment Anything Model are utilized,improving the accuracy of particle recognition and expanding the application scenarios for PSD identification.The method has been applied to the construction site of a rock-filled concrete arch dam,yielding positive results.
作者
付立群
金峰
张喜喜
杨家琦
周虎
FU Li-qun;JIN Feng;ZHANG Xi-xi;YANG Jia-qi;ZHOU Hu(State Key Laboratory of Hydroscience and Engineering,Tsinghua University,Beijing 100084,China;Sichuan CimInfoTech Co.,Ltd.,Meishan 620599,China)
出处
《水电能源科学》
北大核心
2024年第11期7-11,130,共6页
Water Resources and Power
基金
国家自然科学基金重点项目(52039005)。
关键词
堆石混凝土坝
SAM
神经网络算法
图像处理技术
级配曲线(PSD)
rock-filled concrete dam
SAM
neural network algorithm
image processing technology
particle size distribution(PSD)curve