期刊文献+

结合Mask R-CNN和SAM获取堆石混凝土坝堆石级配曲线

Obtaining Particle Size Distribution Curves for Rock-Filled Concrete Dams by Combining Mask R-CNN and SAM
下载PDF
导出
摘要 堆石混凝土坝施工过程质量控制的关键是浇筑密实度,其不仅决定于自密实混凝土工作性能,也与堆石体中的空隙性质密切相关。快速获取堆石粒径级配可以保障浇筑质量的同时,有利于进一步降低成本。现场的堆石数量巨大,依靠手工测量块石粒度不切实际,依靠图像识别技术快速获取堆石粒径是可行的办法。利用MaskR-CNN算法和大模型Segment Anything算法,设计了一套完整的、可操作的获取现场堆石粒径级配曲线的方法。该级配计算方法利用了MaskR-CNN算法和Segment Anything算法各自的优势,提高了堆石料粒径识别结果的准确性,拓展了堆石粒径识别的应用场景。将该方法应用于某堆石混凝土拱坝施工现场,取得了良好效果。 The construction quality control of rock-filled concrete dams is heavily dependent on pouring compactness,which is influenced by the workability of self-compacting concrete and the voids between rocks.The particle size distribu-tion(PSD)must be rapidly obtained to ensure compactness and reduce costs.Since manual measurement of particle size is impractical due to the large volume of rocks,this study presents an algorithm combining Mask R-CNN,and the Seg-ment Anything Model to determine the PSD of rocks through image recognition.The advantages of both Mask R-CNN and the Segment Anything Model are utilized,improving the accuracy of particle recognition and expanding the application scenarios for PSD identification.The method has been applied to the construction site of a rock-filled concrete arch dam,yielding positive results.
作者 付立群 金峰 张喜喜 杨家琦 周虎 FU Li-qun;JIN Feng;ZHANG Xi-xi;YANG Jia-qi;ZHOU Hu(State Key Laboratory of Hydroscience and Engineering,Tsinghua University,Beijing 100084,China;Sichuan CimInfoTech Co.,Ltd.,Meishan 620599,China)
出处 《水电能源科学》 北大核心 2024年第11期7-11,130,共6页 Water Resources and Power
基金 国家自然科学基金重点项目(52039005)。
关键词 堆石混凝土坝 SAM 神经网络算法 图像处理技术 级配曲线(PSD) rock-filled concrete dam SAM neural network algorithm image processing technology particle size distribution(PSD)curve
  • 相关文献

参考文献6

二级参考文献44

  • 1金峰,安雪晖,石建军,张楚汉.堆石混凝土及堆石混凝土大坝[J].水利学报,2005,36(11):1347-1352. 被引量:159
  • 2Bengtsson E, Wihlby C, Lindblad J. Robust cell image segmentation methods [J]. Pattern Recognition and Image Analysis, 2004, 14(2) : 157 - 167.
  • 3Cloppet F, Boucher A. Segmentation of overlapping/ aggregating nuclei cells in biological images [C]// Proceedings of 19th International Conference on Pattern Recognition. Tampa, USA: International Conference on Pattern Recognition Press, 2008:1 -4.
  • 4LIN Zhonghua. The cell image segmentation based on the K-L transform and OTSU method [C]// Proceedings of International Conference on Multimedia and Signal Processing. Guilin, China: International Conference on Multimedia and Signal Processing Press, 2011:25 -28.
  • 5Ficarra E, Cataldo S D, Aequaviva A, et al. Automated segmentation of cells with IHC membrane staining [J]. IEEE Transactions on Biomedical Engineering, 2011, 58(5) : 1421 - 1429.
  • 6Ruberto C D, Dempster A, Khan S, et al. Segmentation of blood images using morphological operators [J]. Image and Vision Computing, 2002, 20(3) : 133 - 146.
  • 7Adollah R, Mashor M Y, Rosline H, et al. Blood cell image segmentation: A review [C]// Proceedings of 21st International Conference on Biomedical Engineering. Kuala Lumpur, Malaysia: Biomed Press, 2008:141-144.
  • 8Vandenberg E H, Meesters A G C A, Kenter J A M, et al. Automated separation of touching grains in digital images of thin sections [J]. Computers Geosciences, 2002, 28(2): 179 - 190.
  • 9Lantuejoul C, Beucher S. On the use o{ geodesic metric in image analysis [J]. Journal of Microscopy, 1981, 121(l) 39 -49.
  • 10Vincent L, Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6) : 583 - 598.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部