摘要
针对现有机载通信网络在数据处理速度、连接稳定性和服务质量方面的不足,提出一种基于人工智能的实时数据处理系统。通过引入深度学习、机器学习和强化学习技术,实现数据的高效采集、传输和处理。实验结果表明,该系统在提高数据传输速度、减少延迟和增强服务质量方面具有显著优势,为机载通信提供了有效的解决方案。
Aiming at the shortcomings of the existing airborne communication network in data processing speed,connection stability and service quality,this paper proposes a real-time data processing system based on artificial intelligence.Through the integration of deep learning,machine learning,and reinforcement learning technologies,efficient data collection,transmission,and processing are achieved.Experimental results demonstrate that the system offers significant advantages in improving data transmission speed,reducing latency,and enhancing service quality,providing an effective solution for airborne communication.
作者
李泽
LI Ze(School of Information Engineering,Hubei Vocational and Technical College,Xiaogan 432000,China)
出处
《通信电源技术》
2024年第22期37-39,共3页
Telecom Power Technology
关键词
人工智能
机载通信
实时数据处理
artificial intelligence
airborne communication
real-time data processing