摘要
直线电机广泛应用于各种半导体封装,为提高加工成品的精度,直线电机必须具有定位精度高、高速、高加速和运动平稳的特点。通过对前馈理论的学习将前馈和反馈控制结合,提出了一种“三环PID+三前馈控制”的复合控制方法。为保证直线电机运动平稳性、无加速度突变和速度突变等特点,使用四阶S运动规划作为直线电机的运动规划。为提高参数整定的效率和准确率,采用自适应遗传算法对3个前馈系数进行整定。提出3种适应度设计方案,分别有指向的优化系统动态段、静态段、综合考虑系统动态和静态段。经过实验论证,与纯PID控制相比,使用优化动态段的前馈参数可以将最大动态误差降低90.0%,使用优化静态段的前馈参数可以将最大静态误差降低95.6%。综合优化系统动态段和静态段的前馈参数可以将最大动态误差降低84.1%,最大静态误差降81.7%。
Linear motors are widely used in various semiconductor packaging.In order to improve the accuracy of processed products,linear motors must have the characteristics of high positioning accuracy,high speed,high acceleration,and smooth motion.A composite control method of"three loop PID+three feedforward control"is proposed by combining feedforward and feedback control through the study of feedforward theory.To ensure the smooth motion of the linear motor without sudden acceleration and speed changes,a fourth-order S-motion planning is used as the motion planning of the linear motor.To improve the efficiency and accuracy of parameter tuning,an adaptive genetic algorithm is used to tune the three feedforward coefficients.This article proposes three fitness design schemes,namely the directed optimization system dynamic segment,static segment,and the comprehensive consideration of system dynamic and static segments.After experimental verification,compared with pure PID control,using optimized dynamic feedforward parameters can reduce the maximum dynamic error by 90.0%,and using optimized static feedforward parameters can reduce the maximum static error by 95.6%.The comprehensive optimization of the feedforward parameters in the dynamic and static sections of the system can reduce the maximum dynamic error by 84.1%and the maximum static error by 81.7%.
作者
周伟
赵俭
金世康
ZHOU Wei;ZHAO Jian;JIN Shikang(School of Mechatronics Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处
《组合机床与自动化加工技术》
北大核心
2024年第11期116-121,共6页
Modular Machine Tool & Automatic Manufacturing Technique
基金
国家自然科学基金项目(61973093)。
关键词
永磁同步直线电机
前馈控制
自适应遗传算法
参数整定
permanent magnet synchronous linear motor
feedforward control
adaptive genetic algorithm
parameter tuning