摘要
针对矩形件排样问题非线性、高复杂计算性等特点,提出一种结合离散粒子群优化(DPSO)算法和混沌遗传(CG)策略的DPSO-CG混合优化算法。利用混沌运动的遍历性和随机性,引入混沌交叉和混沌变异的遗传操作,通过增加个体的多样性,增强算法全局搜索能力,结合最低水平线定位算法,实现矩形件排样后板材利用率的提高。最后针对实例进行排样优化验证,排样结果表明,DPSO-CG混合优化算法能够使板材利用率最大值达到0.9417,实现更优的排样,验证了算法的正确性和有效性。
In view of the nonlinearity and high complexity of the rectangular partslayout problem,a DPSO-CG hybrid optimization algorithm combining discrete particle swarm optimization(DPSO)algorithm and chaotic genetics(CG)strategy was proposed.The algorithm uses the ergodic and random nature of chaotic motion,the genetic operation of chaotic crossover and chaotic mutation is introduced,By increasing the diversity of individuals,enhancing the global search ability of the algorithm,and combining with the lowest horizontal line positioning algorithm,the utilization rate of the plate after rectangular parts layout is improved.Finally,the layout optimization verification is carried out for examples,and the layout results show that the DPSO-CG hybrid optimization algorithm can make the maximum utilization rate of the plate reach 0.9417,achieving better layout,and verifying the correctness and effectiveness of the algorithm.
作者
高宏建
陈霖周廷
陈中祥
胡建兴
王文举
GAO Hongjian;CHEN Linzhouting;CHEN Zhongxiang;HU Jianxing;WANG Wenju(School of Aerospace Engineering,Guizhou Institute of Technology,Guiyang 550025,China;Guizhou UAV Emergency Disaster Reduction Information Engineering Research Center,Guiyang 550025,China;Jiangnan Electromechanical Design Institute,Guiyang 550000,China;Aviation Industry Corporation of China Guizhou Aircraft Co.,Ltd.,Anshun 561000,China)
出处
《机械与电子》
2024年第11期17-22,31,共7页
Machinery & Electronics
基金
贵州省基金基础研究计划(自然科学)项目(黔科合基础-ZK[2022]一般172)
贵州省教育厅普通本科高校青年科技人才成长项目(黔教合KY字[2022]350号)
贵州理工学院高层次人才引进科研启动项目(XJGC20190610)
贵州省普通高等学校人才培养基地(黔教科合KY字[2020]011)
贵州省科技计划项目(黔科合重大专项[2022]007号)。
关键词
矩形排样优化
离散粒子群
混沌遗传
最低水平线
rectangular layout optimization
discrete particle swarm
chaotic genetics
lowest horizontal line