摘要
考虑参数摄动、负载扰动、预定时间收敛及预定性能控制问题,提出一种基于观测器的预定时间预定性能优化控制方法。为降低负载扰动和参数摄动产生的不确定项对电机跟踪性能影响,设计一种预定时间干扰观测器对其进行观测;同时,将预定时间控制方法与预定性能函数法相结合,用于设计感应电机位置子系统控制器、磁链子系统控制器,在预定时间内完成对感应电机系统给定值的精确控制跟踪,且兼顾了电机系统稳态性能及瞬态性能;其次,将自适应遗传算法与粒子群优化算法相结合,对控制器待设计参数进行整定优化,以提升电机系统的收敛速度及鲁棒性能;经过理论分析证实,新提出的控制方法可确保感应电机系统跟踪误差永远处于预定边界内,且感应电机系统的预定时间是稳定的;最后,通过详细的仿真和对比研究论证了所提策略的可行性。
Considering the problems of parameter perturbations,load disturbance,predefined-time convergence and prescribed performance control,a predefined-time optimization control method with prescribed performance is proposed based on observers.In order to reduce the influence of uncertainties caused by load disturbance and parameter perturbation on motor tracking performance,a predetermined time disturbance observer is designed to observe them.Simultaneously,by integrating the predetermined time control method with the predetermined performance function approach,the design of the controller for the induction motor position system and flux system is accomplished.This design ensures precise control and tracking of the motor system’s set value within the specified time frame,while taking into account both the steady-state and transient performance of the motor system.Subsequently,in order to improve the steady-state accuracy and convergence speed of the motor system,the controller settings are optimized by integrating the adaptive genetic algorithm and particle swarm optimization.Theoretical analysis confirms that the proposed control approach maintains the induction motor system’s tracking error within the predetermined limit and guarantees system stability at a specified time.The simulation outcomes ultimately substantiate the efficiency and feasibility of the proposed control methodology.
作者
刘鹏
LIU Peng(CCTEG Taiyuan Research Institute Co.,Ltd.,Taiyuan 030006,China;China National Engineering Laboratory for Coal Mining Machinery,Taiyuan 030006,China)
出处
《机械与电子》
2024年第11期32-41,共10页
Machinery & Electronics
基金
中国煤炭科工集团太原研究院基金项目(KY2023046)。
关键词
感应电机
预定时间控制
预定性能控制
混合智能优化算法
induction motor
predefined-time control
prescribed performance control
hybrid intelligent optimization algorithm