摘要
为优化有色金属选矿过程的精矿品位,将模糊逻辑算法与免疫遗传算法进行融合,设计出了一种IGA-FL融合算法,并基于该融合算法构建有色金属选矿检测模型,对有色金属选矿的精矿品位进行检测和优化。对比试验结果显示,IGA-FL融合算法的数据查全率为99.7%,计算速度为16.7 bps;基于该算法的检测模型平均检测准确率为97.3%,检测耗时1.8 s。应用基于IGA-FL融合算法的检测模型后,有色金属选矿精矿品位达到70.5%,说明该检测模型能够对有色金属选矿的精矿品位进行优化。
To optimize the concentrate grade in the beneficiation process of non-ferrous metals,a fusion algorithm combining fuzzy logic(FL)and immune genetic algorithm(IGA)was developed.Based on this fusion algorithm,a detection model for the beneficiation of non-ferrous metals was constructed to detect and optimize the concentrate grade.Comparative test results show that the data recall rate of the IGA-FL fusion algorithm is 99.7%,with a computation speed of 16.7 bps.The average detection accuracy of the model based on this algorithm is 97.3%,with a detection time of 1.8 s.After applying the detection model based on the IGA-FL fusion algorithm,the concentrate grade of non-ferrous metal beneficiation reached 70.5%,indicating that this model can optimize the concentrate grade effectively.
作者
张健仁
周新宇
廖辉宝
刘欣宇
Zhang Jianren;Zhou Xinyu;Liao Huibao;Liu Xinyu(Basic Geological Survey Institute of Jiangxi Geological Survey and Exploration Institute;Jiangxi Nonferrous Geological Exploration and Development Institute)
出处
《黄金》
CAS
2024年第11期99-103,共5页
Gold
关键词
有色金属选矿
精矿品位
模糊逻辑算法
免疫遗传算法
融合算法
检测模型
non-ferrous metal beneficiation
concentrate grade
fuzzy logic algorithm
immune genetic algorithm
fusion algorithm
detection model