摘要
生成式人工智能作为一种颠覆性技术,引发了威胁学术诚信、侵犯数据隐私、挑战知识产权等高风险问题。教育领域迫切需要反应敏捷、决策果断,采用创新的治理思路与实践路径,以发挥其正面效应,有效控制潜在风险。本研究采用案例分析方法,基于创新治理模式和教育层级覆盖考量英国政府、澳大利亚高等教育质量与标准局、美国麻省理工学院三个案例,构建生成式人工智能教育治理框架,诠释治理新思路、新方法和新路径。研究发现,各层面的生成式人工智能治理策略具有创新性融合特征:政策层面通过柔性政策释放创新空间,广纳多方利益相关者参与,共同推进治理进程;行业监管层面通过权威标准维护教育质量和公平,引领教育评估的变革;教育机构层面通过学习科学理论与教学实践的协同进化,激发教育创新活力。本研究建议落实区域协同创新,推动生成式人工智能应用与治理双轮驱动,积极探索借助生成式人工智能优化和创新教育治理的新可能。
As a disruptive technology,generative artificial intelligence brings forward high-risk issues such as threats to academic integrity,data privacy violations,and intellectual property rights challenges.These issues require education sectors to provide agile responses,decisive actions,and,more importantly,innovative governance approaches and practices to maximize its positive effects while controlling potential risks.This study adopts a multi-case analysis approach to explore these issues,considering governance maturity and educational coverage dimensions,and through three representative cases:the UK government,the Australian Tertiary Education Quality and Standards Agency,and the Massachusetts Institute of Technology in the United States.Based on this analysis,the study constructs a governance framework for generative artificial intelligence in education,illustrating new approaches,methods,and pathways for governance.The study reveals that governance strategies across different levels exhibit an innovative and integrative nature:at the policy level,flexible policies create space for innovation by engaging diverse stakeholders in the governance process;at the regulatory level,authoritative standards uphold educational quality and equity,leading the transformation of educational evaluation;and at the institutional level,the co-evolution of learning sciences and teaching practices stimulates educational innovation.The study suggests further promoting regional collaborative innovation,driving a dual-track approach to the application and governance,and actively exploring new opportunities for optimizing and innovating educational governance through the use of generative artificial intelligence.
作者
沈苑
房斯萌
柳晨晨
王佑镁
汪琼
SHEN Yuan;FANG Simeng;LIU Chenchen;WANG Youmei;WANG Qiong(Research Center for Data Hub and Security,Zhejiang lab,Hangzhou 311121,China;Department of Educational Technology,College of Education,Wenzhou University,Wenzhou 325035,China;Graduate School of Education,Peking University,Beijing 100871,China)
出处
《开放教育研究》
CSSCI
北大核心
2024年第6期39-47,共9页
Open Education Research
基金
国家社会科学基金2023年度教育学重大项目“新一代人工智能对教育的影响研究”(VGA230012)
中国博士后科学基金第17批特别资助项目(2024T170847)。
关键词
生成式人工智能
教育应用
治理创新
路径探析
generative artificial intelligence
educational applications
governance innovation
path analysis