摘要
在本文中,我们研究一类带有恐惧效应时滞的捕食者-猎物系统的动力学.首先我们讨论解的正定性,有界性与持久性,其次基于中心流形定理与正规形,我们研究由恐惧效应时滞引起的Hopf分岔.进一步,我们讨论分岔周期解的全局存在性.最后给出数值模拟以支持我们的结论.
In this paper, we study the dynamics of a predator-prey system with delay of fear effect. First we discuss the positivity, boundedness and permanence of the solution, then base on center manifold theorem and normal form, we study Hopf bifurcation caused by delay of fear effect. Furthermore, we discuss the global existence of bifurcated periodic solutions. At last, some simulations are given to support our results.
作者
石仁祥
胡宗海
SHI RENXIANG;HU ZONGHAI(Department of Mathematics,Nanjing University of Chinese Medicine,Nanjing 210023,China;Department of Common Basic,Anqing Medical College,Anqing 246052,China)
出处
《应用数学学报》
CSCD
北大核心
2024年第6期975-998,共24页
Acta Mathematicae Applicatae Sinica
基金
江苏省自然科学研究基金(批准号:BK20230441)资助项目。