摘要
该文讨论四阶常微分方程边值问题{u(4)(x)=f(x,u(x),u′′(x)),x∈[0,1],u′(0)=u′′′(0)=u(1)=u′′(1)=0正解的存在性,其中,f:[0,1]×R+×R−→R+连续,该问题是描述一类弹性梁静态形变的数学模型.在非线性项f(x,u,v)满足适当的不等式条件下,应用锥上的不动点指数理论获得了正解的存在性结果.
This paper discusses the existence of the positive solution of the fourth-order boundary value problem{u(4)(x)=f(x,u(x),u′′(x)),x∈[0,1],u′(0)=u′′′(0)=u(1)=u′′(1)=0,which models the deformations of a statically elastic beam,where f:[0,1]×R+×R−→R+is continuous.Under that the nonlinearity f(x,u,v)satisfies some inequality conditions,the existence results of positive solutions of this problem are obtained by applying the fixed point index theory in cones.
作者
霍会霞
李永祥
Huo Huixia;Li Yongxiang(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2024年第6期1476-1484,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(12061062,12161080)
关键词
四阶边值问题
正解
锥
不动点指数
Fourth-order boundary value problem
Positive solution
Cone
Fixed point index