摘要
该文首先证明了分数阶格点系统解的全局适定性,然后验证了解算子生成的过程是一个连续过程,并证明该过程具有拉回渐近零性和拉回吸引子,最后通过广义Banach极限构造了该过程的一组Borel不变概率测度.
This paper first verifies the global validity of the solution of fractional lattice system.Then the paper establishes that the process generated by the solution operator is a continuous process,and it is verified that the process has pull-back asymptotic zero and pull-back attractor,and finally construct a set of Borel invariant probability measures of the process through the generalized Banach limit.
作者
张怡然
黎定仕
Zhang Yiran;Li Dingshi(School of Mathematics,Southwest Jiaotong University,Chengdu 610031)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2024年第6期1563-1576,共14页
Acta Mathematica Scientia
基金
国家自然科学基金(11971394,12371178)
中央引导地方基金(2023ZYD0002)
关键词
不变测度
脉冲格点系统
分数阶
拉回吸引子
Invariant measure
Impulsive lattice system
Fractional
Pullback attractor