摘要
Tumor hypoxia diminishes the effectiveness of traditional type II photodynamic therapy(PDT)due to oxygen consumption.Type I PDT,which can operate independently of oxygen,is a viable option for treating hypoxic tumors.In this study,we have designed and synthesized JSK@PEG-IR820 NPs that are responsive to the tumor microenvironment(TME)to enhance type I PDT through glutathione(GSH)depletion.Our approach aims to expand the sources of therapeutic benefits by promoting the generation of superoxide radicals(O_(2)^(-).)while minimizing their consumption.The diisopropyl group within PEG-IR820 serves a dual purpose:it functions as a pH sensor for the disassembly of the NPs to release JSK and enhances intermolecular electron transfer to IR820,facilitating efficient O_(2)^(-).generation.Simultaneously,the release of JSK leads to GSH depletion,resulting in the generation of nitric oxide(NO).This,in turn,contributes to the formation of highly cytotoxic peroxynitrite(ONOO^(-).),thereby enhancing the therapeutic efficacy of these NPs.NIR-II fluorescence imaging guided therapy has achieved successful tumor eradication with the assistance of laser therapy.
基金
the National University of Singapore(NUHSRO/2020/133/Startup/08,NUHSRO/2023/008/NUSMed/TCE/LOA,NUHSRO/2021/034/TRP/09/Nanomedicine)
National Medical Research Council(MOH-001388-00,MOH-001041,CG21APR1005)
Singapore Ministry of Education(MOE-000387-00)
National Research Foundation(NRF-000352-00)
the Open Fund Young Individual Research Grant of Singapore(MOH-001127-01).