摘要
为保证充填工作面电液控制系统的稳定运行,以充填工作面捣实机构为控制对象,通过对多源信息融合技术的研究,将计算机视觉、深度学习等智能识别结果与传感器数据相融合,生成智能控制决策方案,可促进控制理论、计算机视觉、机器学习等技术的融合,对充填工作面自动化、智能化、无人化水平的提高有重要意义,为综采、综放工作面的智能化、无人化建设提供重要的参考。
In order to ensure the stable operation of the electro-hydraulic control system of the filling face,the filling face tamping mechanism was taken as the control object.Through the research on the multi-source information fusion technology,intelligent recognition results such as computer vision and deep learning were integrated with sensor data to generate intelligent control decision scheme.It can promote the integration of control theory,computer vision,machine learning and other technologies,which is of great significance to the improvement of automation,intelligence and unmanned level of filling working face,and provides important reference for the intelligent and unmanned construction of fully mechanized mining and caving face.
作者
崔仕杰
李九州
杨立
Cui Shijie;Li Jiuzhou;Yang Li(Beijing Tianma Intelligent Control Technology Co.,Ltd.,Beijing 101399,China)
出处
《煤矿机械》
2024年第12期185-189,共5页
Coal Mine Machinery
基金
国家重点研发计划项目(2018YFC0604504)
中国煤炭科工集团科技创新创业资金专项项目(2018ZD006)
天地科技股份有限公司科技创新创业资金专项项目(2019-TD-ZD002)。
关键词
多源信息融合
计算机视觉
深度学习
智能控制决策方案
multi-source information fusion
computer vision
deep learning
intelligent control decision scheme