期刊文献+

室温固态微波激光器研发与应用

The development and applications of room-temperature solid-state masers
下载PDF
导出
摘要 微波激光因其极低的量子噪声特性,作为超低噪前置放大器和微波钟在无线通信、深空探测、导航和时频计量等领域都发挥了重要作用。文章详细介绍了微波激光器的基本原理和发展趋势,并基于典型的低温红宝石固态微波激光器研究进展,总结了低温固态微波激光器在低噪声微波放大、高稳定性微波本振和超灵敏顺磁共振三方面的应用优势。面对传统固态微波激光器所面临的低温工作环境问题,文章从微波激光形成机制创新和增益介质探索两个角度,叙述了近年来国内外为实现固态微波激光器在室温条件下运行所开展的研究工作,并对室温固态微波激光器的研究难点和未来发展趋势进行了探讨。 The extremely low quantum noise characteristics of masers play an important role as ultra-low noise preamplifiers and microwave clocks in fields such as wireless communications,deep space exploration,navigation,and time-frequency measurements.A detailed overview of the fundamental principles and developmental trends of masers is provided.Building upon the research progress of typical cryogenic ruby solid-state masers,it summarizes their advantages in low-noise microwave amplification,high-stability microwave oscillation,and ultra-sensitive nuclear magnetic resonance.To address the challenge of the traditional solid-state masers that can only operate in cryogenic environments,the novel maser formation mechanisms and gain media have been explored.It reviews recent domestic and international research efforts aimed at achieving the operation of solid-state masers at room temperature and discusses the research difficulties and future development trends of room-temperature solid-state maser.
作者 吴昊 王凯谱 赵清 WU Hao;WANG Kaipu;ZHAO Qing(Center for Quantum Technology Research,School of Physics,Beijing Institute of Technology,Beijing 100081,China)
出处 《光学技术》 CAS CSCD 北大核心 2024年第6期641-647,共7页 Optical Technique
基金 国家自然科学基金(12204040) 中国博士后科学基金(YJ20210035) 中国博士后科学基金(2021M700439) 中国博士后科学基金(2023T160049)。
关键词 激光技术 微波激光 受激辐射 光激发三重态 电子顺磁共振 laser technology maser stimulated emission of radiation photoexcited triplet state electron paramagnetic resonance
  • 相关文献

参考文献1

二级参考文献27

  • 1Dischler B and Wild C 1998 Low-Pressure Synthetic Diamond: Manufacturing and Applications (Berlin: Springer) p 331
  • 2Jin S and Moustakas T D 1994 Appl. Phys. Lett. 65 403
  • 3Yang J X, Zhang H D, Li C M, Chen G C, Lu F X, Tang W Z and Tong Y M 2004 Diamond Relat. Mater. 13139
  • 4Smith W V, Sorokin P P, Gelles I L and Lasher G J 1959 Phys. Rev. 115 1546
  • 5Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
  • 6Childress L, Taylor J M, Sorensen A S and Lukin M D 2005 Phys. Rev. A 72 052330
  • 7Greentree A D, Devitt S J and Hollenberg L C L 2006 J. Phys.: Condens. Matt. 18 S825
  • 8Cherpak N T 1996 DistributedoType Quantum Amplifiers (Masers) in the Microwave Waveband (Kiev: Naukova Dumka) (in Russian)
  • 9Loubser J H N and van Wyk J A 1978 Rep:Prog. Phys. 41 1201
  • 10Lapchuk N M, Poklonski N A, Vyrko S A, Ralchenko V G, Zavedeev E V, Khmelnitskii R A and Khomich A V 2003 Hydrogen Materials Science and Chemistry of Metal Hydrides ed Veziroglu Net al (Dordrecht: Kluwer Academic) p 792

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部