期刊文献+

分层等级反应模型的贝叶斯推断及其应用

Bayesian inference and application of hierarchical graded response model
下载PDF
导出
摘要 探讨了MCMC算法在分层等级反应模型参数估计中的应用,并针对该模型提出了一种基于Pólya-Gamma数据扩充方法的Gibbs抽样算法.通过模拟实验比较了该方法与哈密顿蒙特卡罗算法在参数估计及计算效率下的性能.实证分析表明了该方法的有效性和实用性. The application of the Markov Chain Monte Carlo(MCMC)algorithm in estimating parameters for a hierarchical graded response model was explored,and a Gibbs sampling algorithm based on the Pólya-Gamma data augmentation method was proposed for this model.Simulation studies were conducted to compare the performances(including parameter estimation accuracy and computational efficiency)of the proposed method with Hamiltonian Monte Carlo algorithm.Empirical analysis demonstrated the effectiveness and practicality of the proposed method.
作者 付志慧 刘红梅 FU Zhi-hui;LIU Hong-mei(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou,Fujian 363000,China;Fujian Key Laboratory of Granular Computing and Applications,Zhangzhou,363000,China)
出处 《吉林师范大学学报(自然科学版)》 2024年第4期58-64,共7页 Journal of Jilin Normal University:Natural Science Edition
基金 国家社会科学基金项目(21BTJ036)。
关键词 分层等级反应模型 Pólya-Gamma分布 Gibbs抽样算法 hierarchical graded response model Pólya-Gamma distribution Gibbs sampling algorithm
  • 相关文献

参考文献2

二级参考文献8

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部