摘要
[目的/意义]采用双重差分法评估大数据政策的创新效应,为大数据政策的改进提供科学依据,推动区域创新能力协调发展。[方法/过程]基于扎根理论,构建大数据政策影响区域创新能力的作用机制模型。在此基础上,利用2010—2020年全国31个省市(除港、澳、台地区)的平衡面板数据,采用双重差分法进行实证检验。[结果/结论]大数据政策可以显著推动区域创新能力的提升,且通过稳健性检验;经作用机制检验发现,大数据政策可以通过数字化驱动、产业集聚、人才集聚、开放合作4条路径来促进区域创新能力的提升,且该促进作用因地理区域、区域创新能力维度、区域创新能力发展水平不同而存在显著差异,其中大数据政策对东部和中部地区、创新产出维度以及高水平区域创新能力地区的创新驱动效应更显著。
[Purpose/Significance]The differences-in-differences method is used to evaluate the innovation effect generated by big data policies,which provides a scientific basis for the improvement of big data policies and promoting the coordinated development of regional innovation capabilities.[Method/Process]Based on grounded theory,this study constructed a mechanism model of how big data policies affect regional innovation capabilities.On this basis,with the balanced panel data derived from 31 provinces and cities across China(excluding Hong Kong,Macao,and Taiwan)from 2010 to 2020,this study used the differences-in-differences method for empirical testing.[Result/Conclusion]The big data policies can significantly promote the improvement of regional innovation capabilities,as verified by robustness tests.Mechanism examination reveals that big data policies facilitate the enhancement of regional innovation capabilities through four pathways:digital drive,industry agglomeration,talent agglomeration,and open cooperation.Moreover,this promotion effect notably varies depending on the difference in geographical region,dimensions of regional innovation capability,and levels of regional innovation capability development.Furthermore,big data policies have a more significant innovation-driving effect in the eastern and central regions,in the innovation output dimension,and in areas with high-level regional innovation capabilities.
作者
盛小平
吴瑾
Sheng Xiaoping;Wu Jin(School of Cultural Heritage and Information Management,Shanghai University,Shanghai 200444,China)
出处
《现代情报》
CSSCI
北大核心
2024年第12期89-101,共13页
Journal of Modern Information
基金
国家社会科学基金重点项目“数字时代的开放科学政策、实施路径与评价研究”(项目编号:22ATQ005)。
关键词
大数据政策
区域创新
政策效应
双重差分
实证研究
big data policy
regional innovation
policy effects
difference-in-differences method
empirical research