摘要
针对目前研究中缺乏镁合金激光焊接熔透状态监测的现状,提出了一种基于声图信号融合的镁合金激光焊接熔透状态监测方法;使用麦克风和高速相机监测激光焊接过程,将提取的声音、图像特征进行特征级融合,并输入反向传播神经网络中,实现镁合金熔透状态准确识别,准确率达100%。结果表明,与单独使用声音或图像特征进行监测相比,声音图像信号融合监测能获得更高的识别准确率;将声图融合特征输入经典机器学习方法中,均获得了较高的准确率;该方法准确识别了镁合金激光焊接熔透状态,有助于提高焊接质量。
To address the lack of the penetration status monitoring on magnesium alloy laser welding in the existing study,a monitoring method for the penetration status of magnesium alloy laser welding based on sound-image signal fusion was proposed.A microphone and high-speed camera were used to monitor laser welding process,the extracted sound and image features were fused at the feature level and inputted into a back-propagation(BP)neural network to achieve accurate recognition of magnesium alloy penetration status,with an accuracy of 100%.The fusion monitoring of sound and image signals can achieve higher recognition accuracy as compared to employing either sound or image features for monitoring the magnesium alloy laser welding penetration status.Furthermore,inputting sound-image fusion features into classical machine learning methods also achieves high accuracy.This method accurately identifies the penetration status of magnesium alloy laser welding,which helps to improve welding quality.
作者
魏伟
孔前程
邓昊林
彭重清
魏芝霖
陈召桃
邓年春
龙雨
WEI Wei;KONG Qiancheng;DENG Haolin;PENG Zhongqing;WEI Zhilin;CHEN Zhaotao;DENG Nianchun;LONG Yu(State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,Nanning,530004,China;School of Mechanical Engineering,Guangxi University,Nanning,530004,China;Guangxi Road and Bridge Engineering Group Co.,Ltd.,Nanning,530200,China;School of Civil Engineering,Guangxi University,Nanning,530004,China)
出处
《广西大学学报(自然科学版)》
CAS
北大核心
2024年第5期1056-1066,共11页
Journal of Guangxi University(Natural Science Edition)
基金
广西重点研发计划项目(桂科AB23026101)
广西科技基地与人才专项(桂科AD23026149)。
关键词
镁合金
激光焊接
特征提取
状态监测
反向传播神经网络
magnesium alloy
laser welding
feature extraction
status monitoring
back-propagation neural network