摘要
为了研究Musielak Orlicz Sobolev空间上与多相泛函相对应的非一致椭圆方程,给出适当的检验函数,利用Young不等式、Sobolev Poincaré不等式、Gehring引理等,建立解的Caccioppoli不等式和逆H lder不等式,进而获得解的局部高阶可积性。
In order to consider the non-uniform elliptic equation corresponding to the multi-phase functional on Musielak Orlicz Sobolev space,Caccioppoli inequality and reverse H lder inequality are established to obtain the local higher integrability of its solution by using an appropriate test function,Young inequality,Sobolev Poincaréinequality and Gehring lemma.
作者
沈毅
马梦璐
佟玉霞
SHEN Yi;MA Menglu;TONG Yuxia(College of Science,North China University of Science and Technology,Tangshan 063210,China;Hebei Key Laboratory of Data Science and Application,Tangshan 063210,China)
出处
《广西大学学报(自然科学版)》
CAS
北大核心
2024年第5期1120-1125,共6页
Journal of Guangxi University(Natural Science Edition)
基金
河北省自然科学基金项目(E2022209110)。
关键词
高阶可积性
椭圆问题
多相泛函
higher integrability
elliptic problem
multi-phase function