摘要
研究了求解Landau-Lifshitz-Bloch方程的一阶向后Euler有限元全离散算法.借助数学归纳法,分别得到了精确解和数值解关于磁化强度和磁场在L^(2)和H^(1)范数下的最优误差估计,并通过二维和三维空间的数值结果,验证了所给的理论分析.
This paper investigates the first-order backward Euler finite element fully discrete algorithm for solving the Landau-Lifshitz-Bloch(LLB)equation.By using mathematical induction,the optimal error estimates of magnetization and magnetic field under L^(2) and H^(1) norms are obtained for both exact and numerical solutions,respectively.The theoretical analysis is validated by numerical results in 2D and 3D spaces.
作者
孟裕
MENG Yu(College of Mathematics and Physics,Wenzhou University,Wenzhou,China 325035)
出处
《温州大学学报(自然科学版)》
2024年第4期1-10,共10页
Journal of Wenzhou University(Natural Science Edition)